By using a low temperature scanning tunneling microscope we have probed the superconducting energy gap of epitaxially grown Pb films as a function of the layer thickness in an ultrathin regime (5-18 ML). The layer-dependent energy gap and transition temperature (Tc) show persistent quantum oscillations down to the lowest thickness without any sign of suppression. Moreover, by comparison with the quantum-well states measured above Tc and the theoretical calculations, we found that the Tc oscillation correlates directly with the density of states oscillation at E(F) . The oscillation is manifested by the phase matching of the Fermi wavelength and the layer thickness, resulting in a bilayer periodicity modulated by a longer wavelength quantum beat.
We have grown well-ordered graphene adlayers on the lattice-matched Co(0001) surface. Low-temperature scanning tunneling microscopy measurements demonstrate an on-top registry of the carbon atoms with respect to the Co(0001) surface. The tunneling conductance spectrum shows that the electronic structure is substantially altered from that of isolated graphene, implying a strong coupling between graphene and cobalt states. Calculations using density functional theory confirm that structures with on-top registry have the lowest energy and provide clear evidence for strong electronic coupling between the graphene pi-states and Co d-states at the interface.
We present a scanning tunneling microscopy (STM)/scanning tunneling spectroscopy (STS) study of a model catalyst system consisting of supported gold nanoparticles on a reduced Fe3O4(111) surface in ultrahigh vacuum. Gold forms two electrically distinct nanoparticles on an iron oxide surface upon annealing multilayer Au/Fe3O4(111) at 500 °C for 15 min. I (V) curves taken via STS measurements show that large gold nanoparticles (∼8 nm) exhibit a metallic electronic structure and, thus, are likely neutral. Single gold adatoms appear to be strongly bonded to the oxygen sites of the Fe3O4(111) surface, and tunneling electrons are observed to flow predominantly from the STM tip to the Au adatoms and into the oxygen sites of the surface. The site-specific adsorption of the gold adatoms on oxygen surface atoms and the size-sensitive nature of the electronic structure suggest that Au adatoms are likely positively charged. When this Au/Fe3O4(111) system is dosed with CO at 260 K, adsorption of CO molecules normal to the surface atop the gold adatom sites takes place. CO adsorption on the large Au nanoparticles (∼8 nm) could not be confirmed by STM. These observations indicate that nonmetallic, positively charged Au species may play a key role in reactions involving CO, such as the CO oxidation and the water−gas-shift reaction on Au/metal oxide surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.