Ship structures made of glass fiber-reinforced polymer (GFRP) composite laminates are considerably thicker than aircraft and automobile structures and more likely to contain voids. The production characteristics of such composite laminates were investigated in this study by ultrasonic nondestructive evaluation (NDE). The laminate samples were produced from E-glass chopped strand mat (CSM) and woven roving (WR) fabrics with different glass fiber contents of 30–70%. Approximately 300 pulse-echo ultrasonic A-scans were performed on each sample. The laminate samples produced from only CSM tended to contain more voids compared with those produced from a combination of CSM and WR, resulting in the relative density of the former being lower than the design value, particularly for high glass fiber contents of ≥50%. The velocity of the ultrasonic waves through the CSM-only laminates was also lower for higher glass fiber contents, whereas it steadily increased for combined CSM–WR laminates. Burn-off tests of the laminates further revealed that the fabric configuration of the combined CSM–WR laminates was of higher quality, prevented the formation of voids, and improved inter-layer bonding. These findings indicate that combined CSM–WR laminates should be used to achieve more accurate ultrasonic NDE of GFRP composite structures.
A comparative study of glass fiber content (Gc) measurement methods was conducted using actual glass fiber reinforced plastic laminates from the hull plate of a 26-ton yacht. Two prototype side hull plates with the design Gc (40 wt.%) and higher Gc (64 wt.%) were prepared. Four methods were used to study the samples: the calculation method suggested by classification societies’ rules; two direct measurement methods using either calipers and scales or a hydrometer; and the burn-off method, wherein the resin matrix is combusted from the laminates. The results were compared and analyzed to identify the accuracy and benefits of each method. The rule calculation method was found to be effective if the quality of the manufacturing process is known. However, fabrication errors in the laminate structures cannot be detected. Additionally, while direct methods are used to measure the density of glass fibers using measurements of the densities of raw materials and laminates, the volume of inner defects occurring during the fabrication of laminates could not be considered. Finally, it was found that the burn-off method measures Gc and considers the defect volume (voids) inside laminates as well as the non-uniformity of the external shape.
Approximately 90,000 ships are registered in South Korea, and about 80,000 of these ships are used in domestic shipping. Among these, 84% are small ships, such as a fishing vessels that weigh less than 20 tons and are made mostly of an FRP (Fiber Reinforced Plastics). When this fact is taken into account, the greenhouse gas emissions that are released per ton of a composite vessel are sizeable. In this study, the laminated structures of an FRP fishing vessel, many of which currently are being built in Korea, were analyzed by ISO (International Organization for Standardization) and international design rules, and the structures of the hulls are lightweight with optimum glass fiber mass content as determined by the laminate weight minimization algorithm. As a result, it was confirmed that the laminations of the vessels in accordance with the Korean rule could have 6.4% to approximately 11% more design margin compared to the requirements of ISO and other international rules. And the case study of the application of the laminate weight minimization algorithm showed the possibility of reducing the weight of the hull bottom plating by as much as about 19.32% and by as much as about 18.06% in the overall structure.
Given the stricter environmental regulations and rising oil prices, means of transportation based on eco-friendly fuel are drawing increased attention. Electric propulsion systems (EPSs) have been applied to various means of transportation, including cars, and many studies have examined ships equipped with EPSs. Generally, because of the low energy density of the battery, EPS-equipped vehicles experience the disadvantages of limited operating time and distance compared to fossil fuel-based vehicles. In this study, we developed an algorithm that determines the optimal electric motor and battery specifications for the basic requirements of a small craft equipped with an EPS. Moreover, to control the stability of the craft, we developed an algorithm that optimally arranges EPS components, wherein the center of gravity is used as an object function. The differential evolution algorithm was used for optimization, and the effectiveness was verified by applying this algorithm to the actual design of a small craft. The proposed algorithm represents the research results for determining the basic EPS specifications for a small craft and deriving an optimal arrangement for these specifications. This algorithm is expected to be effectively applied to design a new electric propulsion ship or to convert an existing ship to an electric propulsion ship.
Glass fiber-reinforced polymer (GFRP) ship structures have hull plate thicknesses of 10 mm or more and are fabricated using a higher proportion of resin matrix systems than E-glass fiber reinforcements. Therefore, GFRP is classified as a highly attenuative material, and this characteristic is a major cause of large errors in ultrasonic nondestructive testing for quality inspections. In this study, considering the aforementioned design and fabrication characteristics of GFRP ship structures, hull plate prototypes with various glass fiber weight fractions, glass contents (Gc), and laminate thicknesses were fabricated. Then, a pulse-echo ultrasonic test was performed with the fabricated prototypes, and the attenuation characteristics of the GFRP hull plates were investigated by conducting statistical analyses. These results demonstrated that with a variation of 30–50% in the Gc used for GFRP structure design, the plate thickness variation had a greater impact than the Gc variation on the attenuation characteristics. The increase in Gc naturally increased the scattering of ultrasonic waves but did not significantly affect the attenuation coefficient. The effects of the inner voids on the ultrasonic waves were also investigated, and the results confirmed that the laminates in this Gc region did not significantly affect attenuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.