We and others have shown that changing surface characteristics of the spacer implanted during the first Masquelet stage alters some aspects of membrane development. Previously we demonstrated that titanium spacers create membranes that are better barriers to movement of solutes >70kDa in size than polymethyl methacrylate (PMMA) induced-membranes, and roughening creates more mechanically compliant membranes. However, it is unclear if these alterations affect the membrane’s biochemical environment or bone regeneration during the second stage. Ten-week-old, male Sprague-Dawley rats underwent an initial surgery to create an externally stabilized 6mm femoral defect. PMMA or titanium spacers with smooth (~1um) or roughened (~8um) surfaces were implanted. Four weeks later, rats were either euthanized for membrane harvest or underwent the second Masquelet surgery. Titanium spacers induced thicker membranes that were similar in structure and biochemical expression. All membranes were bilayered with the inner layer having increased factor expression (BMP2, TGFβ, IL6, and VEGF). Roughening increased overall IL6 levels. Ten-weeks post-engraftment, PMMA-smooth induced membranes better supported bone regeneration (60% union). The other groups only had 1 or 2 that united (9–22%). There were no significant differences in any microCT or dynamic histology outcome. In conclusion, this study suggests that the membrane’s important function in the Masquelet technique is not simply as a barrier. There is likely a critical biochemical, cellular, or vascular component as well.
Masquelet's induced membrane technique (MIMT) is a relatively new, two-stage surgical procedure to reconstruct segmental bone defects. First performed by Dr. Masquelet in the mid-1980s, MIMT has shown great promise to revolutionize critical-sized bone defect repair and has several advantages over its alternative, distraction osteogenesis (DO). Also, its success in extremely challenging cases (defects > 15 cm) suggests that its study could lead to discovery of novel biological mechanisms that might be at play during segmental defect healing and fracture nonunion. MIMT's advantages over DO have led to a worldwide increase in MIMT procedures over the past decades. However, MIMT often needs to be repeated and so the average initial success rate in adults lags significantly behind that of DO (86% vs 95%, respectively). The autologous foreign-body membrane created during the first stage by the immune system's response to a polymethyl methacrylate bone cement spacer is critical to supporting the morselized bone graft implanted in the second stage. However, the biological and/or physical mechanisms by which the membrane supports graft to bone union are unclear. This lack of knowledge makes refining MIMT and improving the success rates through technique improvements and patient selection a significant challenge and hinders wider adoption. In this review, current knowledge from basic, translational, and clinical studies is summarized. The dynamics of both stages under normal conditions as well as with drug or material perturbations is discussed along with perspectives on high-priority future research directions.
The Masquelet technique depends on pre-development of a foreign-body membrane to support bone regeneration with grafts over three times larger than the traditional maximum. To date, the procedure has always used spacers made of bone cement, which is the polymer polymethyl methacrylate (PMMA), to induce the foreign-body membrane. This study sought to compare (i) morphology, factor expression, and cellularity in membranes formed by PMMA, titanium, and polyvinyl alcohol sponge (PVA) spacers in the Masquelet milieu and (ii) subsequent bone regeneration in the same groups. Ten-week-old, male Sprague-Dawley rats were given an externally stabilized, 6 mm femur defect, and a pre-made spacer of PMMA, titanium, or PVA was implanted. All animals were given 4 weeks to form a membrane, and those receiving an isograft were given 10 weeks post-implantation to union. All samples were scanned with microCT to measure phase 1 and phase 2 bone formation. Membrane samples were processed for histology to measure membrane morphology, cellularity, and expression of the factors BMP2, TGFβ, VEGF, and IL6. PMMA and titanium spacers created almost identical membranes and phase 1 bone. PVA spacers were uniformly infiltrated with tissue and cells and did not form a distinct membrane. There were no quantitative differences in phase 2 bone formation. However, PMMA induced membranes supported functional union in 6 of 7 samples while a majority of titanium and PVA groups failed to achieve the same. Spacer material can alter the membrane enough to disrupt phase 2 bone formation. The membrane's role in bone regeneration is likely more than just as a physical barrier. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
The Masquelet technique is a surgical procedure to regenerate segmental bone defects. The two-phase treatment relies on the production of a vascularized foreign-body membrane to support bone grafts over three times larger than the traditional maximum. Historically, the procedure has always utilized a bone cement spacer to evoke membrane production. However, membrane formation can easily be effected by implant surface properties such as material and topology. This study sought to determine if the membrane's mechanical or barrier properties are affected by changing the spacer material to titanium or roughening the surface finish. Ten-week-old, male Sprague Dawley rats were given an externally stabilized, 6 mm femur defect which was filled with a pre-made spacer of bone cement (PMMA) or titanium (TI) with a smooth (∼1 μm) or roughened (∼8 μm) finish. After 4 weeks of implantation, the membranes were harvested, and the matrix composition, tensile mechanics, shrinkage, and barrier function was assessed. Roughening the spacers resulted in significantly more compliant membranes. TI spacers created membranes that inhibited solute transport more. There were no differences between groups in collagen or elastin distribution. This suggests that different membrane characteristics can be created by altering the spacer surface properties. Surgeons may unknowingly effecting membrane formation via bone cement preparation techniques.
Fractures of the proximal femur can be a challenging treatment dilemma for the orthopaedic surgeon. Complex mechanical forces and anatomic variables in this region combine to make treatment of these injuries difficult and can often result in serious complications. The decision to treat this fracture with an intramedullary device requires the surgeon evaluate many variables in the context of the specific fracture pattern. These include the choice of implant, starting portal location, and positioning of the patient. Assessment of the fracture pattern and its 3 dimensional orientation is usually accomplished with the aid of advanced imaging. The patient's physiological status, body habitus and bone quality must also be incorporated into the treatment algorithm. We review these issues and how they factor into the decision making process in order to develop a successful operative plan for these injuries. We will review the starting portal selection, reduction and insertion techniques and examine options for proximal locking screw configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.