Bacterial foodborne pathogens cause millions of illnesses each year and disproportionately impact those in developing countries. To combat these diseases and their spread, effective monitoring of foodborne pathogens is needed. Technologies to detect these microbes must be deployable at the point-ofcontamination, often in nonideal environments. Electrochemical sensors are uniquely suited for field-deployable monitoring, as they are quantitative, rapid, and do not require expensive instrumentation. When combined with the inherent recognition capabilities of biomolecules, electrochemistry is unmatched for quantitative biological measurements with minimal equipment requirements. This Review is centered on recent advances in electrochemical sensors for the detection of bacterial foodborne pathogens with a specific emphasis on field-deployable platforms, as this is a key requirement of any technology that could effectively halt the spread of foodborne diseases. Innovative electrochemical sensing strategies are highlighted that demonstrate the ability of these technologies to achieve high sensitivity and large detection ranges with rapid readout. Sensing strategies are categorized on the basis of whether they incorporate biological pretreatments or biorecognition elements, and their key advantages and disadvantages are summarized. As this class of sensors continues to mature, methods to incorporate device specificity and to detect targets from complex solutions will enable the translation of these platforms from laboratory prototypes to real-world implementation.
The field of infectious disease diagnostics is burdened by inequality in access to healthcare resources. In particular, “point-of-care” (POC) diagnostics that can be utilized in non-laboratory, sub-optimal environments are appealing for disease control with limited resources. Electrochemical biosensors, which combine biorecognition elements with electrochemical readout to enable sensitive and specific sensing using inexpensive, simple equipment, are a major area of research for the development of POC diagnostics. To improve the limit of detection (LOD) and selectivity, signal amplification strategies have been applied towards these sensors. In this perspective, we review recent advances in electrochemical biosensor signal amplification strategies for infectious disease diagnostics, specifically biosensors for nucleic acids and pathogenic microbes. We classify these strategies into target-based amplification and signal-based amplification. Target-based amplification strategies improve the LOD by increasing the number of detectable analytes, while signal-based amplification strategies increase the detectable signal by modifying the transducer system and keep the number of targets static. Finally, we argue that signal amplification strategies should be designed with application location and disease target in mind, and that the resources required to produce and operate the sensor should reflect its proposed application, especially when the platform is designed to be utilized in low-resource settings. We anticipate that, based on current technologies to diagnose infectious diseases, incorporating signal-based amplification strategies will enable electrochemical POC devices to be deployed for illnesses in a wide variety of settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.