Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletion and/or mutation of the survival motor neuron protein Gene (SMN1) that results in the expression of a truncated protein lacking the C terminal exon-7. Whereas SMN has been shown to be an important component of diverse ribonucleoprotein (RNP) complexes, its function in neurons is unknown. We hypothesize that the active transport of SMN may be important for neurite outgrowth and that disruption of exon-7 could impair its normal intracellular trafficking. SMN was localized in granules that were associated with cytoskeletal filament systems and distributed throughout neurites and growth cones. Live cell imaging of enhanced green fluorescent protein (EGFP)-SMN granules revealed rapid, bidirectional and cytoskeletal-dependent movements. Exon-7 was necessary for localization of SMN into the cytoplasm but was not sufficient for granule formation and transport. A cytoplasmic targeting signal within exon-7 was identified that could completely redistribute the nuclear protein D-box binding factor 1 into the cytoplasm. Neurons transfected with SMN lacking exon-7 had significantly shorter neurites, a defect that could be rescued by redirecting the exon-7 deletion mutant into neurites by a targeting sequence from growth-associated protein-43. These findings provide the first demonstration of cytoskeletal-based active transport of SMN in neuronal processes and the function of exon-7 in cytoplasmic localization. Such observations provide motivation to investigate possible transport defects or inefficiency of SMN associated RNPs in motor neuron axons in SMA.
The cytoprotective coating of physicochemically labile mammalian cells with a durable material has potential applications in cell-based sensors, cell therapy, and regenerative medicine, as well as providing a platform for fundamental single-cell studies in cell biology. In this work, HeLa cells in suspension were individually coated with silica in a cytocompatible fashion through bioinspired silicification. The silica coating greatly enhanced the resistance of the HeLa cells to enzymatic attack by trypsin and the toxic compound poly(allylamine hydrochloride), while suppressing cell division in a controlled fashion. This bioinspired cytocompatible strategy for single-cell coating was also applied to NIH 3T3 fibroblasts and Jurkat cells.
Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (<100 nm) but durable shell on a "non-spore-forming" cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example, bacterial endospores. Bioinspired silicification and phenolics-based coatings are, so far, the main approaches to the formation of cytoprotective cell-in-shell hybrids, because they ensure cell viability during encapsulations and also generate durable nanoshells on cell surfaces. The resulting cell-in-shell hybrids extrinsically possess enhanced resistance to external aggressors, and more intriguingly, the encapsulation alters their metabolic activity, exemplified by retarded or suppressed cell cycle progression. In addition, recent developments in the field have further advanced the synthetic tools available to the stage of chemical sporulation and germination of mammalian cells, where cytoprotective shells are formed on labile mammalian cells and broken apart on demand. For example, individual HeLa cells are coated with a metal-organic complex of ferric ion and tannic acid, and cellular adherence and proliferation are controlled by the programmed shell formation and degradation. Based on these demonstra...
Single-cell encapsulation promises the cytoprotection of the encased cells against lethal stressors, reminiscent of the sporulation process in nature. However, the development of a cytocompatible method for chemically mimicking the germination process (i.e., shell degradation on-demand) has been elusive, despite the shell degradation being pivotal for the practical use of functional cells as well as for single cell-based biology. We report that an artificial shell, composed of tannic acid (TA) and Fe(III) , on individual Saccharomyces cerevisiae controllably degrades on-demand, while protecting the yeast from multiple external aggressors, including UV-C irradiation, lytic enzymes, and silver nanoparticles. Cell division is suppressed by the TA-Fe(III) shell, but restored fully upon shell degradation. The formation of a TA-Fe(III) shell would provide a versatile tool for achieving the chemical version of "sporulation and germination".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.