In this study, we used convolutional neural networks (CNNs)—which are well-known deep learning models suitable for image data processing—to estimate the temporal and spatial distribution of chlorophyll-a in a bay. The training data required the construction of a deep learning model acquired from the satellite ocean color and hydrodynamic model. Chlorophyll-a, total suspended sediment (TSS), visibility, and colored dissolved organic matter (CDOM) were extracted from the satellite ocean color data, and water level, currents, temperature, and salinity were generated from the hydrodynamic model. We developed CNN Model I—which estimates the concentration of chlorophyll-a using a 48 × 27 sized overall image—and CNN Model II—which uses a 7 × 7 segmented image. Because the CNN Model II conducts estimation using only data around the points of interest, the quantity of training data is more than 300 times larger than that of CNN Model I. Consequently, it was possible to extract and analyze the inherent patterns in the training data, improving the predictive ability of the deep learning model. The average root mean square error (RMSE), calculated by applying CNN Model II, was 0.191, and when the prediction was good, the coefficient of determination (R2) exceeded 0.91. Finally, we performed a sensitivity analysis, which revealed that CDOM is the most influential variable in estimating the spatiotemporal distribution of chlorophyll-a.
Forest change detection is essential to prevent the secondary damage occurring by landslides causing profound results to the environment, ecosystem, and human society. The remote sensing technique is a solid candidate for identifying the spatial distribution of the forest. Even though the acquiring and processing of remote sensing images are costly and time- and labor-consuming, the development of open source data platforms relieved these burdens by providing free imagery. The open source images also accelerate the generation of algorithms with large datasets. Thus, this study evaluated the generalizability of forest change detection by using open source airborne images and the U-Net model. U-Net model is convolutional deep learning architecture to effectively extract the image features for semantic segmentation tasks. The airborne and tree annotation images of the capital area in South Korea were processed for building U-Net input, while the pre-trained U-Net structure was adopted and fine-tuned for model training. The U-Net model provided robust results of the segmentation that classified forest and non-forest regions, having pixel accuracies, F1 score, and intersection of union (IoU) of 0.99, 0.97, and 0.95, respectively. The optimal epoch and excluded ambiguous label contributed to maintaining virtuous segmentation of the forest region. In addition, this model could correct the false label images because of showing exact classification results when the training labels were incorrect. After that, by using the open map service, the well-trained U-Net model classified forest change regions of Chungcheong from 2009 to 2016, Gangwon from 2010 to 2019, Jeolla from 2008 to 2013, Gyeongsang from 2017 to 2019, and Jeju Island from 2008 to 2013. That is, the U-Net was capable of forest change detection in various regions of South Korea at different times, despite the training on the model with only the images of the capital area. Overall, this study demonstrated the generalizability of a deep learning model for accurate forest change detection.
Unplanned and rapid urban growth requires the reckless expansion of infrastructure including water, sewage, energy, and transportation facilities, and thus causes environmental problems such as deterioration of old towns, reduction of open spaces, and air pollution. To alleviate and prevent such problems induced by urban growth, the accurate prediction and management of urban expansion is crucial. In this context, this study aims at modeling and predicting urban expansion in Seoul metropolitan area (SMA), Korea, using GIS and XAI techniques. To this end, we examined the effects of land-cover, socio-economic, and environmental features in 2007 and 2019, within the optimal radius from a certain raster cell. Then, this study combined the extreme gradient boosting (XGBoost) model and Shapley additive explanations (SHAP) in analyzing urban expansion. The findings of this study suggest urban growth is dominantly affected by land-cover characteristics, followed by topographic attributes. In addition, the existence of water body and high ECVAM grades tend to significantly reduce the possibility of urban expansion. The findings of this study are expected to provide several policy implications in urban and environmental planning fields, particularly for effective and sustainable management of lands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.