Summary Proteins, particularly viral proteins, can be multifunctional, but the mechanism(s) behind this trait are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry and cellular microscopy that VP40 rearranges into different structures, each with a distinct function required for the ebolavirus life cycle. A butterfly-shaped VP40 dimer trafficks to the cellular membrane. There, electrostatic interactions trigger rearrangement of the polypeptide into a linear hexamer. These hexamers construct a multi-layered, filamentous matrix structure that is critical for budding and resembles tomograms of authentic virions. A third structure of VP40, formed by a different rearrangement, is not involved in virus assembly, but instead uniquely binds RNA to regulate viral transcription inside infected cells. These results provide a functional model for ebolavirus matrix assembly and the other roles of VP40 in the virus life cycle, and demonstrate how a single, wild-type, unmodified polypeptide can assemble into different structures for different functions.
SUMMARY Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.
Summary Ebolavirus NP oligomerizes into helical filaments found at the core of the virion, encapsidates the viral RNA genome, and serves as a scaffold for additional viral proteins within the viral nucleocapsid. We identified a portion of the phosphoprotein homologue VP35 that binds with high affinity to nascent NP and regulates NP assembly and viral genome binding. Removal of the VP35 peptide leads to NP self-assembly via its N-terminal oligomerization arm. NP oligomerization likely causes a conformational change between the NP N- and C-terminal domains, facilitating RNA binding. These functional data are complemented by a crystal structure of the NP°-VP35 complex at 2.4 Å resolution. The interactions between NP and VP35 illuminated by these structures are conserved among filoviruses and provide key targets for therapeutic intervention.
Sudan virus (genus ebolavirus) is lethal, yet no monoclonal antibody is known to neutralize it. Here we describe antibody 16F6 that neutralizes Sudan virus and present its structure bound to the trimeric viral glycoprotein. Unexpectedly, the 16F6 epitope overlaps that of KZ52, the only other antibody against the GP1,2 core to be visualized. Further, both antibodies against this key GP1–GP2-bridging epitope neutralize at a post-internalization step, likely fusion.
The lichen cyanobacterial symbiont Nostoc sp. ATCC 53789 and its close relative Nostoc sp. GSV 224 are prolific producers of natural products, generating >25 derivatives of the cryptophycin class of secondary metabolites. Cryptophycin 1, the prototypic member of the class, is a potent tubulin-depolymerizing agent, and several semisynthetic derivatives are being developed as anticancer therapeutics. Here we provide a detailed characterization of the cryptophycin metabolic pathway by stable-isotope labeling experiments and through cloning, sequencing, and annotating the cryptophycin biosynthetic gene cluster. A comparative secondary metabolomic analysis based on polyketide (PK)/non-ribosomal peptide gene clusters from the phylogenetically related, non-cryptophycin producing cycad symbiont, Nostoc punctiforme ATCC 29133, was used to identify the cryptophycin biosynthetic genes that encompass approximately 40 kb within the lichen symbiont Nostoc sp. ATCC 53789 genome. The pathway encodes a collinear set of enzymes, including three modular PK synthases, two non-ribosomal peptide synthetase modules, and an integrated adenylation/ketoreductase didomain for elaboration of the leucic acid subunit. In addition, genes encoding key tailoring steps, including a FAD-dependent halogenase and CYP450 epoxidase, were identified. The inherent flexibility of the cryptophycin biosynthetic enzymes was harnessed to generate a suite of new analogues by altering the pool of PK starter units and selected amino acid extender groups. Characterization of the cryptophycin CYP450 enabled development of the first stereospecific synthesis of cryptophycin 2, through a tandem chemoenzymatic synthesis from the natural seco-cryptophycin 4 chain elongation intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.