Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease of tomato and pepper. The disease process is interactive and very intricate and involves a plethora of genes in the pathogen and in the host. In the pathogen, different genes are activated in response to the changing environment to enable it to survive, adapt, evade host defenses, propagate, and damage the host. To understand the disease process, it is imperative to broaden our understanding of the gene machinery that participates in it, and the most reliable way is to identify these genes in vivo. Here, we have adapted a recombinase-based in vivo expression technology (RIVET) to study the genes activated in X. campestris pv. vesicatoria during its interaction with one of its hosts, tomato. This is the first study that demonstrates the feasibility of this approach for identifying in vivo induced genes in a plant pathogen. RIVET revealed 61 unique X. campestris pv. vesicatoria genes or operons that delineate a picture of the different processes involved in the pathogen-host interaction. To further explore the role of some of these genes, we generated knockout mutants for 13 genes and characterized their ability to grow in planta and to cause disease symptoms. This analysis revealed several genes that may be important for the interaction of the pathogen with its host, including a citH homologue gene, encoding a citrate transporter, which was shown to be required for wild-type levels of virulence.
Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35–120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs’ analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the two major groups of strains of this pathogen.
SummaryMany types of crops are severely affected by at least one important bacterial disease. Chemical control of bacterial plant diseases in the field vastly relies on copper‐based bactericides, yet with limited efficacy. In this study, we explored the potential of two random peptide mixture (RPM) models as novel crop protection agents. These unique peptide mixtures consist of random combination of l‐phenylalanine and l‐ or d‐lysine (FK‐20 and FdK‐20, respectively) along the 20 mer chain length of the peptides. Both RPMs displayed powerful bacteriostatic and bactericidal activities towards strains belonging to several plant pathogenic bacterial genera, for example, Xanthomonas, Clavibacter and Pseudomonas. In planta studies in the glasshouse revealed that RPMs significantly reduced disease severity of tomato and kohlrabi plants infected with Xanthomonas perforans and Xanthomonas campestris pv. campestris respectively. Moreover, RPM effects on reduction in disease severity were similar to those exerted by the commercial copper‐based bactericide Kocide 2000 that was applied at a 12‐fold higher concentration of the active compound relative to the RPM treatments. Importantly, the two tested RPM compounds had no toxic effect on survival of bees and Caco‐2 mammalian cells. This study demonstrates the potential of these innovative RPMs to serve as crop protection agents against crop diseases caused by phytopathogenic bacteria.
A recombinase-based in vivo expression technology (RIVET) approach with Xanthomonas campestris pv. vesicatoria (Xcv) revealed that lipA, annotated as putative secreted lipase, is expressed during the interaction between this pathogen and tomato. Here, the tnpR and uidA reporter genes were used to show that lipA is strongly induced in XVM2 minimal medium and during the early stages of tomato infection by Xcv. A mutant strain impaired in lipA was generated by insertional mutagenesis. This mutant grew in a similar manner to the wild-type in rich medium, but its growth was significantly compromised in a medium containing olive oil as a single carbon source. The lipolytic activity of the extracellular fraction of the lipA mutant was reduced significantly relative to that of the wild-type strain, thus confirming that lipA indeed encodes a functional secreted enzyme with lipolytic activity. A plasmid carrying a wild-type copy of lipA complemented the lipA mutant for extracellular lipolytic activity. Dip inoculation experiments with tomato lines Hawaii 7998 (H7998) and Micro Tom showed that the lipA mutant grew to a lesser extent than the wild-type in tomato leaves. Following leaf syringe infiltrations, the mutant strain induced disease symptoms that were less severe than those induced by the wild-type strain, supporting a significant role of lipA in the pathogenicity of Xcv.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.