Structure-based virtual screening is highly used in the early stages of drug discovery to identify new putative lead compounds for a given target. However, when a small molecule elicits a biological effect, but its target is unknown, or the side effects it causes arise from its undesired interaction with unknown counterparts, the identification of its interacting targets represents an indispensable task. The computational procedure named inverse virtual screening, which relies on docking a molecule (or a small set of compounds) against panels of target proteins to select the most promising complexes, could be useful to overcome these issues. Panels can contain thousands of proteins, and they must be correctly prepared to assure the best docking performance. Therefore, the preparation of panels of proteins collected in the Protein Data Bank (www.rcsb.org), if manually performed, may be costly in terms of time and efforts, and this can limit the applicability of this approach in high-throughput virtual screening workflows. We here show an automated workflow to speed up panel preparation and development, and to test its performance, this protocol was initially applied to a panel of 628 viral proteins and, afterward, to a panel of transferase proteins (2789 entries) to perform a large inverse virtual screening study, testing a small set of compounds synthesized in our laboratory. Tankyrase 2 (PARP 5b) was selected as their preferred target of interaction, and the predicted binding was validated by means of surface plasmon resonance experiments. This protocol is useful for the rapid identification of the interacting target for a bioactive compound; accordingly, it facilitates the re-evaluation of the pharmacological activity of known active compounds, addressing the repurposing and the polypharmacology concepts.
The development of new bioactive compounds represents one of the main purposes of the drug discovery process. Various tools can be employed to identify new drug candidates against pharmacologically relevant biological targets, and the search for new approaches and methodologies often represents a critical issue. In this context, in silico drug repositioning procedures are required even more in order to re-evaluate compounds that already showed poor biological results against a specific biological target. 3D structure-based pharmacophoric models, usually built for specific targets to accelerate the identification of new promising compounds, can be employed for drug repositioning campaigns as well. In this work, an in-house library of 190 synthesized compounds was re-evaluated using a 3D structure-based pharmacophoric model developed on soluble epoxide hydrolase (sEH). Among the analyzed compounds, a small set of quinazolinedione-based molecules, originally selected from a virtual combinatorial library and showing poor results when preliminarily investigated against heat shock protein 90 (Hsp90), was successfully repositioned against sEH, accounting the related built 3D structure-based pharmacophoric model. The promising results here obtained highlight the reliability of this computational workflow for accelerating the drug discovery/repositioning processes.
We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.