Output facet temperatures of an uncoated high power continuous-wave quantum cascade laser (QCL) emitting at 8.5 μm were measured by using micro-Raman thermometry. The rate of the measured temperature changes with the injected electrical power increased from 6.5 K/W below the laser threshold to 12.3 K/W above the threshold. In addition, the measured temperature rise exceeded 220 K at an optical power of 0.9 W, well above the model projections based only on Joule heating. Facet oxidation was characterized via x-ray photoelectron spectroscopy measurements at incremental etch depths. While the oxidation reactions of InP and Ga were observed only at the surface level, the measured penetration of native Al2O3 was ∼24 nm. COMSOL thermal modeling demonstrated that light reabsorption by the native Al2O3 layer could well explain the additional temperature rise above the threshold. These results suggest that facet oxidation must be addressed to ensure the reliability of high-power long wave infrared QCLs.
The low cross-plane thermal conductivity of quantum cascade lasers (QCLs) is a significant limitation in their Continuous-Wave (CW) performance. Structural parameters such as individual layer thicknesses and interface density vary for QCLs with different target emission wavelengths, and these design parameters are expected to influence the cross-plane thermal conductivity. Though previous works have used theoretical models and experimental data to quantify thermal conductivity, the correlation between target wavelength and thermal conductivity has yet to be reported for QCLs. In this work, we observe a general trend across a group of QCLs emitting from 3.7 to 8.7 µm: as the QCL design changes to reduce wavelength, the thermal conductivity decreases as well. Numerically, we measured an approximate 70% reduction in thermal conductivity, from 1.5 W/(m·K) for the 8.7 µm device, to 0.9 W/(m·K) for the 3.7 µm device. Analysis of these structures with the Diffuse Mismatch Model (DMM) for thermal boundary resistance (TBR) shows that the largest contribution of this effect is the impact of superlattice interface density on the thermal conductivity. The observed changes in conductivity result in significant changes in projected CW optical power and should be considered in laser design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.