The size effect in electroplated copper wires has been widely studied recently. However, there is no consensus on the role of various scattering mechanisms. Therefore, an in-depth analysis to reveal the origin of the size effect is needed. In this article, we study the resistivity of fine copper wires whose feature sizes shrink in two dimensions. It is shown that the residual resistivity (at 5 K) increases with decreasing wire width or height and the temperature-dependent resistivity slightly deviates from that of bulk copper. This is mainly attributed to surface scattering rather than grain boundary scattering. In fact, the influence of grain boundary scattering in these well annealed copper wires is relatively small. In addition, for copper wires with a constant height, a linear dependence of the copper resistivity on 1/width (w) or 1/cross-sectional area (A), namely ρ=ρic+c*∕w (or ρ=ρic+c**∕A), is derived from the classic surface and grain boundary scattering models and validated experimentally. In this simple description, the contributions of different scattering mechanisms, such as surface reflectivity, p, and grain boundary reflection coefficient, R, defect and impurity density, combine together in parameters of ρic and c* (or c**). Especially, c* is a good indicator of scattering strength, from which one can quantitatively analyze the impact of nonsurface scattering contribution with a reference slope of c*=32.14.
Milk is considered a perfect natural food for humans and animals. However, aflatoxin B1 (AFB1) contaminating the feeds fed to lactating dairy cows can introduce aflatoxin M1 (AFM1), the main toxic metabolite of aflatoxins into the milk, consequently posing a risk to human health. As a result of AFM1 monitoring in raw milk worldwide, it is evident that high AFM1 concentrations exist in raw milk in many countries. Thus, the incidence of AFM1 in milk from dairy cows should not be underestimated. To further optimize the intervention strategies, it is necessary to better understand the metabolism of AFB1 and its biotransformation into AFM1 and the specific secretion pathways in lactating dairy cows. The metabolism of AFB1 and its biotransformation into AFM1 in lactating dairy cows are drawn in this review. Furthermore, recent data provide evidence that in the mammary tissue of lactating dairy cows, aflatoxins significantly increase the activity of a protein, ATP-binding cassette super-family G member 2 (ABCG2), an efflux transporter known to facilitate the excretion of various xenobiotics and veterinary drugs into milk. Further research should focus on identifying and understanding the factors that affect the expression of ABCG2 in the mammary gland of cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.