Enantiomerically pure fluoro-[D1]methyllithium and iodo-[D1]methyllithiums of up to 92% ee were generated by transmetalation of the corresponding stannanes with MeLi in THF at various temperatures. The intermediate halo-[D1]methyllithiums were trapped with benzaldehyde or acetophenone already present in excess in the reaction mixture to either give halohydrins or to disintegrate to carbene. The fluoro-[D1]methyllithiums were found to be microscopically configurationally stable within the tested range of -95 to 0 °C, but chemically only stable at temperatures below -95 °C due to a rapidly increasing portion disintegrating to carbene. The iodo-[D1]methyllithiums were configurationally labile relative to the rate of addition to PhCHO at all temperatures tested (-95 to -30 °C). Disintegration to carbene interfered as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.