Homocysteine (Hcy) is a toxic, sulfur-containing intermediate of methionine metabolism. Hyperhomocysteinemia (hHcy), as a consequence of impaired Hcy metabolism or defects in crucial co-factors that participate in its recycling, is assumed as an independent human stroke risk factor. Neural cells are sensitive to prolonged hHcy treatment, because Hcy cannot be metabolized either by the transsulfuration pathway or by the folate/vitamin B12 independent remethylation pathway. Its detrimental effect after ischemia-induced damage includes accumulation of reactive oxygen species (ROS) and posttranslational modifications of proteins via homocysteinylation and thiolation. Ischemic preconditioning (IPC) is an adaptive response of the CNS to sub-lethal ischemia, which elevates tissues tolerance to subsequent ischemia. The main focus of this review is on the recent data on homocysteine metabolism and mechanisms of its neurotoxicity. In this context, the review documents an increased oxidative stress and functional modification of enzymes involved in redox balance in experimentally induced hyperhomocysteinemia. It also gives an interpretation whether hyperhomocysteinemia alone or in combination with IPC affects the ischemia-induced neurodegenerative changes as well as intracellular signaling. Studies document that hHcy alone significantly increased Fluoro-Jade C- and TUNEL-positive cell neurodegeneration in the rat hippocampus as well as in the cortex. IPC, even if combined with hHcy, could still preserve the neuronal tissue from the lethal ischemic effects. This review also describes the changes in the mitogen-activated protein kinase (MAPK) protein pathways following ischemic injury and IPC. These studies provide evidence for the interplay and tight integration between ERK and p38 MAPK signaling mechanisms in response to the hHcy and also in association of hHcy with ischemia/IPC challenge in the rat brain. Further investigations of the protective factors leading to ischemic tolerance and recognition of the co-morbid risk factors would result in development of new avenues for exploration of novel therapeutics against ischemia and stroke.
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder that results in massive hippocampal and neocortical neuronal loss leading to dementia and eventual death. The exact cause of Alzheimer's disease is not fully explored, although a number of risk factors have been recognized, including high plasma concentration of homocysteine (Hcy). Hyperhomocysteinemia (hHcy) is considered a strong, independent risk factor for stroke and dementia. However, the molecular background underlying these mechanisms linked with hHcy and ischemic stroke is not fully understood. Paper describes rat model of global forebrain ischemia combined with the experimentally induced hHcy. Global ischemia-reperfusion injury (IRI) was developed by 4-vessels occlusion lasting for 15 min followed by reperfusion period of 72 h. hHcy was induced by subcutaneous injection of 0.45 µmol/g of Hcy in duration of 14 days. The results showed remarkable neural cell death induced by hHcy in the brain cortex and neurodegeneration is further aggravated by global IRI. We demonstrated degeneration of cortical neurons, alterations in number and morphology of tissue astrocytes and dysregulation of oxidative balance with increased membrane protein oxidation. Complementary to, an immunohistochemical analysis of tau protein and β-amyloid peptide showed that combination of hHcy with the IRI might lead to the progression of AD-like pathological features. Conclusively, these findings suggest that combination of risk factor hHcy with IRI aggravates neurodegeneration processes and leads to development of AD-like pathology in cerebral cortex.
Hyperhomocysteinemia (hHcy) is regarded as an independent and strong risk factor for cerebrovascular diseases, stroke, and dementias. The hippocampus has a crucial role in spatial navigation and memory processes and is being constantly studied for neurodegenerative disorders. We used a moderate methionine (Met) diet at a dose of 2 g/kg of animal weight/day in duration of four weeks to induce mild hHcy in adult male Wistar rats. A novel approach has been used to explore the hippocampal metabolic changes using proton magnetic resonance spectroscopy (1H MRS), involving a 7T MR scanner in combination with histochemical and immunofluorescence analysis. We found alterations in the metabolic profile, as well as remarkable histo-morphological changes such as an increase of hippocampal volume, alterations in number and morphology of astrocytes, neurons, and their processes in the selective vulnerable brain area of animals treated with a Met-enriched diet. Results of both methodologies suggest that the mild hHcy induced by Met-enriched diet alters volume, histo-morphological pattern, and metabolic profile of hippocampal brain area, which might eventually endorse the neurodegenerative processes.
Cardiac arrest is one of the leading causes of death among adults in older age. Understanding mechanisms how organism responds to ischemia at global level is essential for the prevention and ischemic patient's treatment. In this study, we used a global cerebral ischemia induced by four-vessel occlusion as an established animal model for ischemic stroke to investigate metabolic changes after 24 h reperfusion, when transitions occur due to the onset of delayed neuronal death. We also focused on the endogenous phenomenon known as ischemic tolerance by the pre-ischemic treatment. The experiments were carried out on blood plasma samples as easily available and metabolically reflecting the overall changes in injured organism. Our results imply that disturbed glycolysis pathway, as a consequence of ischemic injury, leads to the increased level of ketone bodies (acetone, acetoacetate and β-hydroxybutyrate) along with increased utilization of triacylglycerols in plasma of ischemic and ischemically preconditioned rats. Complementary to, a decreased level of glycolytic intermediates (lactate, pyruvate, acetate) with increased level of glucose was found in ischemic and preconditioned animals. The protective effect of ischemic preconditioning on metabolome recovery was demonstrated by significantly increased level of creatine compared to ischemic, non-preconditioned rats. We also document that acetoacetate, pyruvate, lactate, and leucine have the best discriminatory power between ischemic and control plasma. Conclusively, our results provide evidence that NMR spectra analysis can identify specific group of metabolites present in plasma with the capability for discrimination between individual groups of animals. In addition, an excellent feasibility for the statistical discrimination among ischemic, preconditioned, and control rats can be applied regardless of native or deproteinated plasma and also regardless of noesy or cpmg NMR acquisition.
Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer’s disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.