Ghrelin, an endogenous ligand of the growth hormone (GH) secretagogue (GHS) receptor, stimulates GH release, appetite, and weight gain in humans and rodents. Synthetic GHSs modulate sleep electroencephalogram (EEG) and nocturnal hormone secretion. We studied the effect of 4 x 50 microg of ghrelin administered hourly as intravenous boluses between 2200 and 0100 on sleep EEG and the secretion of plasma GH, ACTH, cortisol, prolactin, and leptin in humans (n = 7). After ghrelin administration, slow-wave sleep was increased during the total night and accumulated delta-wave activity was enhanced during the second half of the night. Rapid-eye-movement (REM) sleep was reduced during the second third of the night, whereas all other sleep EEG variables remained unchanged. Furthermore, GH and prolactin plasma levels were enhanced throughout the night, and cortisol levels increased during the first part of the night (2200-0300). The response of GH to ghrelin was most distinct after the first injection and lowest after the fourth injection. In contrast, cortisol showed an inverse pattern of response. Leptin levels did not differ between groups. Our data show a distinct action of exogenous ghrelin on sleep EEG and nocturnal hormone secretion. We suggest that ghrelin is an endogenous sleep-promoting factor. This role appears to be complementary to the already described effects of the peptide in the regulation of energy balance. Furthermore, ghrelin appears to be a common stimulus of the somatotropic and hypothalamo-pituitary-adrenocortical systems. It appears that ghrelin is a sleep-promoting factor in humans.
Ghrelin, a growth hormone (GH) secretagogue receptor ligand was isolated from the stomach and hypothalamus of rats and humans. In rodents, ghrelin exerts distinct orexigenic action, probably as counterpart of the anorexigenic leptin. In humans, ghrelin infusion enhances appetite. It is unknown whether single intravenous (i.v.) injections of ghrelin affect human eating behavior. Therefore, we investigated the influence of a single i.v. bolus injection of 100 mg ghrelin on appetite, ideas about food, hormone levels, and glucose concentration in young control subjects. In order to test gender differences, we included five women and four men. After ghrelin administration, appetite was enhanced in eight of nine subjects. Seven probands reported a vivid, plastic image of their preferred meal. Furthermore, ghrelin stimulated an immediate increase in plasma levels of GH (area under the curve, mean7SEM 35716 ng/ml  min after placebo [P] to 28087533 ng/ml  min after ghrelin [G]; po0.001), cortisol (59087984 ng/ml  min [P] to 1017971293 ng/ml  min [G]; po0.001), and ACTH (9227103 pg/ml  min [P] to 30307763 pg/ml  min [G]; po0.02), whereas leptin levels remained unchanged. Contrary to placebo, glucose concentration did not decrease markedly after administration of ghrelin. Our data suggest that i.v. ghrelin stimulates appetite and images of food in young women and men. Obviously, leptin is not involved in these effects.
The most consistent biological findings in patients with depression are abnormalities in the hypothalamic-pituitary-adrenal (HPA)-axis, which can be measured using the combined dexamethasone-suppression/CRH-stimulation (Dex-CRH) test. The reactivity of the HPAaxis in this test, however, ranges over several orders of magnitude in depressed patients with comparable severity of symptoms. In this present study, we investigate which factors influence the magnitude of the response in the Dex-CRH test in 235 acutely depressed inpatients. We first examined the effects of common confounders shown to influence the HPA-axis, such as caffeine and nicotine consumption, acute stressors during the test, weight, gender, and age. Of all these variables, only female sex and nicotine consumption were positively correlated with the cortisol or ACTH response, respectively. As for the effects of psychopharmacological treatment, only the intake of carbamazepine and the fact of having relapsed under an established pharmacotherapy significantly increased the response in the Dex-CRH test, whereas the presence or absence of antidepressant treatment, the type of antidepressant treatment, or the number of ineffective antidepressant treatment trials during the index episode up to admission did not have any effect. We also found a positive correlation of the number of previous episodes, the overall HAM-D score and the severity of somatic/vegetative symptoms with the results in the Dex-CRH test. These results underline that in depressed patients this test is not majorly influenced by disease-unrelated factors. In addition, current antidepressant treatment does not appear to affect test outcome in the absence of clinical response. The influence of the number of previous episodes and relapse under pharmacotherapy suggests that HPA-axis reactivity may be altered by repetitive states of hypercortisolemia or continuous antidepressant treatment. Finally, more severe vegetative symptoms are associated with an enhanced HPA-axis activity.
The noradrenergic and specific serotoninergic antidepressant mirtazapine improves sleep, modulates hormone secretion including blunting of hypothalamic-pituitary-adrenocortical (HPA) activity, and may prompt increased appetite and weight gain. The simultaneous investigation of sleep electroencephalogram (EEG) and hormone secretion during antidepressive treatment helps to further elucidate these effects. We examined sleep EEG (for later conventional and quantitative analyses) and the nocturnal concentrations of cortisol, adrenocorticotropin (ACTH), growth hormone (GH), prolactin, melatonin and the key factors of energy balance, ghrelin, and leptin before and after 28 days of treatment of depressed patients (seven women, three men, mean age 39.974.2 years) with mirtazapine. In addition, a sleep EEG was recorded at day 2 and the dexamethasone-corticotropin-releasing hormone (DEX-CRH) test was performed to assess HPA activity at days À3 and 26. Psychometry and mirtazapine plasma concentrations were measured weekly. Already at day 2, sleep continuity was improved. This effect persisted at day 28, when slow-wave sleep, low-delta, theta and alpha activity, leptin and (0300-0700) melatonin increased, and cortisol and ghrelin decreased. ACTH and prolactin remained unchanged. The first two specimens of GH collected after the start of quantitative EEG analysis were reduced at day 28. The DEX-CRH test showed, at day 26, a blunting of the overshoot of ACTH and cortisol found at day À3. The Hamilton Depression score decreased from 32.177.3 to 15.576.7 between days À1 and 28. A weight gain of approximately 3 kg was observed. This unique profile of changes is compatible with the action of mirtazapine at 5-HT-2 receptors, at presynaptic adrenergic alpha 2 receptors, at the HPA system, and on ghrelin and leptin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.