Aging population and longer life expectancy are the main reasons for an increasing number of patients with wound problems. Although the interest in wound care increases continuously, wound management still remains a challenge mainly due to the higher occurrence of chronic wounds, which require intensive care and constant monitoring. Here, we demonstrate a fluorescent sensing system to monitor the wound status and to distinguish between an autonomously healing and a chronic wound at an early stage. The system allows monitoring two of the most relevant fluctuating wound parameters during the healing process which are pH and glucose concentration. A fluorescent pH indicator dye, carboxynaphthofluorescein, and a metabolite-sensing enzymatic system, based on glucose oxidase and horseradish peroxidase, were immobilized on a biocompatible polysaccharide matrix to develop a functional hydrogel coating for wound monitoring. The changes in metabolite and enzyme concentration in artificial wound extract were converted into a fluorescent signal.
BackgroundThe industrially important yeast Blastobotrys (Arxula) adeninivorans is an asexual hemiascomycete phylogenetically very distant from Saccharomyces cerevisiae. Its unusual metabolic flexibility allows it to use a wide range of carbon and nitrogen sources, while being thermotolerant, xerotolerant and osmotolerant.ResultsThe sequencing of strain LS3 revealed that the nuclear genome of A. adeninivorans is 11.8 Mb long and consists of four chromosomes with regional centromeres. Its closest sequenced relative is Yarrowia lipolytica, although mean conservation of orthologs is low. With 914 introns within 6116 genes, A. adeninivorans is one of the most intron-rich hemiascomycetes sequenced to date. Several large species-specific families appear to result from multiple rounds of segmental duplications of tandem gene arrays, a novel mechanism not yet described in yeasts. An analysis of the genome and its transcriptome revealed enzymes with biotechnological potential, such as two extracellular tannases (Atan1p and Atan2p) of the tannic-acid catabolic route, and a new pathway for the assimilation of n-butanol via butyric aldehyde and butyric acid.ConclusionsThe high-quality genome of this species that diverged early in Saccharomycotina will allow further fundamental studies on comparative genomics, evolution and phylogenetics. Protein components of different pathways for carbon and nitrogen source utilization were identified, which so far has remained unexplored in yeast, offering clues for further biotechnological developments. In the course of identifying alternative microorganisms for biotechnological interest, A. adeninivorans has already proved its strengthened competitiveness as a promising cell factory for many more applications.
Aims: Construction of a transgenic Arxula adeninivorans strain that produces a high concentration of adenine deaminase and investigation into the application of the enzyme in the production of food with low purine content. Methods and Results: The A. adeninivorans AADA gene, encoding adenine deaminase, was expressed in this yeast under the control of the strong inducible nitrite reductase promoter using the Xplor â 2 transformation/ expression platform. The recombinant enzyme was biochemically characterized and was found to have a pH range of 5Á5-7Á5 and temperature range of 34-46°C with medium thermostability. A beef broth was treated with the purified enzyme resulting in the concentration of adenine decreasing from 70Á4 to 0Á4 mg l À1 .Conclusions: It was shown that the production of adenine deaminase by A. adeninivorans can be increased and that the recombinant adenine deaminase can be used to lower the adenine content in the food. Significance and Impact of the Study: Adenine deaminase is one component of an enzymatic system that can reduce the production of uric acid from food constituents. This study gives details on the expression, characterization and application of the enzyme and thus provides evidence that supports the further development of the system.
Hyperuricemia and its symptoms are becoming increasingly common worldwide. Elevated serum uric acid levels are caused by increased uric acid synthesis from food constituents and reduced renal excretion. Treatment in most cases involves reducing alcohol intake and consumption of meat and fish or treatment with pharmaceuticals. Another approach could be to reduce uric acid level in food, either during production or consumption. This work reports the production of recombinant urate oxidase by Arxula adeninivorans and its application to reduce uric acid in a food product. The A. adeninivorans urate oxidase amino acid sequence was found to be similar to urate oxidases from other fungi (61-65% identity). In media supplemented with adenine, hypoxanthine or uric acid, induction of the urate oxidase (AUOX) gene and intracellular accumulation of urate oxidase (Auoxp) was observed. The enzyme characteristics were analyzed from isolates of the wild-type strain A. adeninivorans LS3, as well as from those of transgenic strains expressing the AUOX gene under control of the strong constitutive TEF1 promoter or the inducible AYNI1 promoter. The enzyme showed high substrate specificity for uric acid, a broad temperature and pH range, high thermostability and the ability to reduce uric acid content in food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.