Sodium diethyldithiocarbamate (DETC) is the main metabolite of disulfiram. Recently, we reported that mechanism of disulfiram cytotoxicity in V79 cells might be partially connected with thiol redox-state imbalance. Here, we examined the effect of DETC on the level of intracellular glutathione (GSH), protein oxidation (measured as PC—protein carbonyl content), lipid peroxidation (measured as TBARS—thiobarbituric acid reactive substances), antioxidant enzymatic defense, as well as on apoptosis. We used V79 Chinese hamster fibroblasts cells with and without modulated glutathione (GSH) level by N-acetyl-l-cysteine (NAC). We showed that treatment with DETC at concentrations that cause a moderate increase in thiol-state imbalance but not cell death stimulates oxidative stress measured as increased level of PC and TBARS, adaptive response of GSH-related enzymes and apoptosis. Our results show that cellular effects of DETC are partially attributable to the initial redox cellular state, since the increase of GSH level by NAC pre-treatment prevented the observed changes.
Numerous formulations derived from the shiitake medicinal mushroom, Lentinus edodes, demonstrate anticancer activities. We hypothesized that isolates from selenium (Se)-enriched mycelia of L. edodes would possess stronger cancer-preventive properties than current preparations. The aim of this study was to investigate whether the presence of Se-methyl-seleno-L-cysteine in mycelial extracts of L. edodes affects their cytotoxic activity (makes them stronger) or whether they are as effective as Se-containing polysaccharides. Extracts were prepared from Se-containing mycelia under various conditions and assayed for cytotoxic activity in cancer (PC3 and HeLa) and normal (HMEC-1) cell lines. The chemical composition of the extracts was examined; specifically, the amounts of potentially cytotoxic Se compounds (methylselenocysteine, selenomethionine, and Se-containing polysaccharides) were measured. The relationship between extract composition and biological activity was characterized. Mycelial cultures were cultivated in a 10-L bioreactor in medium enriched with sodium selenite. Mycelial extracts were prepared either at 100°C or at 4°C in acidic solution. Total Se content was determined using the atomic absorption spectrometry method, and methylselenocysteine and selenomethionine contents were measured using reverse-phase high-performance liquid chromatography. Protein, carbohydrate, and polyphenolic contents were determined with spectrophotometric methods, and Se-containing polysaccharides were measured with the use of precipitation. Anticancer activity of mycelial extracts was examined using the MTT cell viability assay. Extracts containing Se-methyl-seleno-L-cysteine or Se-polysaccharides prepared at 4°C and 100°C, respectively, display moderate, time-dependent, specific cytotoxic activity in HeLa and PC3 cell lines. The effect in HeLa cells is more pronounced in the extract prepared at 4°C than at 100°C. The effect is almost equal for the PC3 cell line. However, both extracts have no effect or only slightly stimulate normal (HMEC-1) cell viability. The selective cytotoxic activity of L. edodes extracts in cancer (PC3 and HeLa) cells is due to the presence of both Se-methyl-seleno-L-cysteine and selenated polysaccharides, perhaps in combination with other active ingredients.
One of the major lipid peroxidation products trans-4-hydroxy-2-nonenal (HNE), forms cyclic propano- or ethenoadducts bearing six- or seven-carbon atom side chains to G>C≫A>T. To specify the role of SOS DNA polymerases in HNE-induced mutations, we tested survival and mutation spectra in the lacZα gene of M13mp18 phage, whose DNA was treated in vitro with HNE, and which was grown in uvrA(-)Escherichia coli strains, carrying one, two or all three SOS DNA polymerases. When Pol IV was the only DNA SOS polymerase in the bacterial host, survival of HNE-treated M13 DNA was similar to, but mutation frequency was lower than in the strain containing all SOS DNA polymerases. When only Pol II or Pol V were present in host bacteria, phage survival decreased dramatically. Simultaneously, mutation frequency was substantially increased, but exclusively in the strain carrying only Pol V, suggesting that induction of mutations by HNE is mainly dependent on Pol V. To determine the role of Pol II and Pol IV in HNE induced mutagenesis, Pol II or Pol IV were expressed together with Pol V. This resulted in decrease of mutation frequency, suggesting that both enzymes can compete with Pol V, and bypass HNE-DNA adducts in an error-free manner. However, HNE-DNA adducts were easily bypassed by Pol IV and only infrequently by Pol II. Mutation spectrum established for strains expressing only Pol V, showed that in uvrA(-) bacteria the frequency of base substitutions and recombination increased in relation to NER proficient strains, particularly mutations at adenine sites. Among base substitutions A:T→C:G, A:T→G:C, G:C→A:T and G:C→T:A prevailed. The results suggest that Pol V can infrequently bypass HNE-DNA adducts inducing mutations at G, C and A sites, while bypass by Pol IV and Pol II is error-free, but for Pol II infrequent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.