The aim of the research was to determine the effect of fertilising with various doses of ash from biomass combustion (D2–D6) compared to control plots and classic NPK (D1) fertiliser on the morphological and mechanical properties of potato tubers (Solanum tuberosum L.). The field experiment was carried out in the years 2019–2021 (south-eastern Poland, 49°59′ N, 21°57′ E) on two types of soil: Gleyic Chernozem (silty loam) and Haplic Luvisol (silt). The values of mechanical parameters, such as the peel and flesh punching force (FD), deformation (DR) and energy (ED) needed to destroy the test sample, were assessed. The biometric features of the tubers were also assessed. It was found that tubers obtained from the experimental fields where D3 and D4 ash fertiliser doses were applied (corresponding to doses of 188 and 282 kg∙ha−1 K) had the highest tuber yields and the highest resistance to mechanical damage under quasi-static loads. Ash from biomass combustion can be an alternative to conventional mineral fertilizers and can be used in the development of mineral fertilization plans for sustainable agriculture, which will help to solve the problem of storage of this waste.
Quercetin, classified as a flavonoid, is a strong antioxidant that plays a significant role in the regulation of physiological processes in plants, which is particularly important in the case of biotic and abiotic stresses. The study investigated the effect of the use of potassium quercetin solutions in various concentrations (0.5%, 1.0%, 3.0% and 5.0%) on the physiological and biochemical properties of wheat seedlings. A pot experiment was carried out in order to determine the most beneficial dose of this flavonoid acting as a bio-stimulant for wheat plants. Spraying with quercetin derivative solutions was performed twice, and physiological measurements (chlorophyll content and fluorescence as well as gas exchange) were carried out on the first and seventh days after each application. The total phenolic compounds content and the total antioxidant capacity were also determined. It was shown that the concentrations of potassium quercetin applied have a stimulating effect on the course of physiological processes. In the case of most of the tested physiological parameters (chlorophyll content and fluorescence and gas exchange) and the total antioxidant capacity, no significant differences were observed in their increase as a result of application with concentrations of 3.0 and 5.0%. Therefore, the beneficial effect of quercetin on the analysed parameters is already observed when spraying with a concentration of 3.0%.
Plant production technologies based solely on the improvement of plants themselves face obstacles resulting from the natural limitations of the biological potential of varieties. Therefore, new substances are sought that positively influence the growth and development of plants and increase resistance to various biotic and abiotic stresses, which also translates into an increase in obtained yields. The exogenous application of various phytoprotectants shows great promise in terms of cost effectiveness compared to traditional breeding methods or transgenic approaches in relation to increasing plant tolerance to abiotic stresses. Quercetin is a strong antioxidant among phenolic compounds, and it plays a physiological and biochemical role in plants. As such, the aim of this research was to assess the effect of an aqueous solution of a quercetin derivative with potassium, applied in various concentrations (0.5%, 1.0%, 3.0% and 5.0%), on the efficiency of the photosynthetic apparatus and biochemical properties of maize. Among the tested variants, compared to the control, the most stimulating effect on the course of physiological processes (PN, gs, ci, CCI, Fv/Fm, Fv/F0, PI) in maize leaves was found in 3.0 and 5.0% aqueous solutions of the quercetin derivative. The highest total antioxidant capacity and total content of polyphenolic compounds were found for plants sprayed with 5.0% quercetin derivative solution; therefore, in this study, the optimal concentration could not be clearly selected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.