Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.
Sixteen new Ciprofloxacin derivatives were designed and successfully synthesized. In an in silico experiment, lipophilicity was established for obtained compounds. All compounds were screened for antimicrobial activity using standard and clinical strains. As for Gram-positive hospital microorganisms, all tested derivatives were active. Measured MICs were in the range 1–16 µg/mL, confirming high antimicrobial potency. Derivative 12 demonstrated activity against all standard Gram-positive Staphylococci, within the range of 0.8–1.6 µg/mL and was confirmed as the leading structure with MICs 1 µg/mL for S. pasteuri KR 4358 and S. aureus T 5591 (clinical strains). All compounds were screened for their in vitro cytotoxic properties via the MTT method. Three of the examined compounds (3, 11 and 16) showed good activity against cancer cells, and in parallel were found not to be cytotoxic toward normal cells. Doxorubicin SI ranged 0.14–1.11 while the mentioned three ranged 1.9–3.4. Selected Ciprofloxacin derivatives were docked into the crystal structure of topoisomerase II (DNA gyrase) in complex with DNA (PDB ID: 5BTC). In summary, leading structures were established (3, 11, 12 and 16). We have observed poor results in preformed studies for disubstituted derivatives, suggesting that 3-oxo-4-carboxylic acid core is the active DNA-gyrase binding site, and when structural changes were made in this fragment, there was an observed decrease in antibacterial potency.
High glucose consumption and lactate synthesis in aerobic glycolysis are a hallmark of cancer cells. They can form lactate also in glutaminolysis, but it is not clear how oxygen availability affects this process. We studied lactate synthesis at various oxygen levels in human primary (SW480) and metastatic (SW620) colon cancer cells cultured with L-Ser and/or L-Asp. Glucose and lactate levels were determined colorimetrically, amino acids by HPLC, expression of AST1-mRNA and AST2-mRNA by RT-PCR. In both lines glucose consumption and lactate synthesis were higher at 10% than at 1% oxygen, and lactate/glucose ratio was increased above 2.0 by L-Asp. AST1-mRNA expression was independent on oxygen and cell line, but AST2-mRNA was lower at hypoxia in SW480. We conclude that, in both cell lines at 1% hypoxia, lactate is formed mainly from glucose but at 10% normoxia also from L-Asp. At 10% normoxia, lactate synthesis is more pronounced in primary than metastatic colon cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.