Eight men, 19-35 years of age, breathed 20.9% (normal oxygen), 13.9% (mild hypoxia) or 11.1% (severe hypoxia) oxygen in nitrogen gas mixtures during three 20 min periods, which were separated by 1 h recovery periods. The order in which the gas mixtures were breathed was random. The partial pressure of oxygen decreased from a mean of 93.5 during exposure to normal oxygen to 53.9 and 36.7 mmHg during mild and severe hypoxia respectively. There were corresponding decreases in haemoglobin saturation. The partial pressure of carbon dioxide was lower and the pH higher during severe hypoxia than during exposure to normal oxygen. There were no changes in the plasma osmolality or in the concentrations of sodium or potassium in the plasma. There was a tendency for both the renin activity and the concentration of aldosterone in the plasma to decrease progressively as the percentage of oxygen breathed decreased. Unlike severe hypoxia, mild hypoxia suppressed the concentration of antidiuretic hormone (ADH) in the plasma of all subjects by about 59%; during severe hypoxia the reduction was not significant, being only about 33%. These data are consistent with the suggestion that the effect of hypoxia on the release of ADH is dependent on the level of hypoxia.
Iron is an essential nutrient for a child’s proper development at every growth stage. It is crucial for the production of red blood and muscle cells, DNA replication, and the development of the brain, nervous and immune systems. Iron deficiency is the most common micronutrient deficiency in children worldwide. Despite widespread access to nutritional information for children, parents continue to make many feeding mistakes. This study aimed to assess whether any nutritional intervention would affect the iron status in children. The parents of 203 children were randomly assigned to one of two groups: the study group received intensive mobile nutritional education for a year, while the control group received no intervention. Blood tests were performed on both groups at the beginning of the study and one year later. The educational intervention resulted in statistically significantly higher levels of RBC (red blood cells; p = 0.020), HGB (haemoglobin; p = 0.039), HCT (haematocrit; p = 0.036), MCV (mean cell volume; p = 0.018) parameters and iron dietary intake (p ≤ 0.001). Even a non-targeted dietary intervention improves the iron status in children. As iron management is insufficient in most children, an iron-targeted nutritional intervention appears necessary.
Gut microbiota is the aggregate of all microorganisms in the human digestive system. There are 1014 CFU/mL of such microorganisms in the human body, including bacteria, viruses, fungi, archaea and protozoa. The Firmicutes and Bacteroidetes bacteria phyla comprise 90% of the human gut microbiota. The microbiota support the healthy functioning of the human body by helping with digestion (mainly via short-chain fatty acids and amino acids) and producing short-chain fatty acids. In addition, it exhibits many physiological functions, such as forming the intestinal epithelium, intestinal integrity maintenance, the production of vitamins, and protection against pathogens. An altered composition or the number of microorganisms, known as dysbiosis, disrupts the body’s homeostasis and can lead to the development of inflammatory bowel disease, irritable bowel syndrome, and metabolic diseases such as diabetes, obesity and allergies. Several types of disruptions to the gut microbiota have been identified: SIBO (Small Intestinal Bacterial Overgrowth), LIBO (Large Intestinal Bacterial Overgrowth), SIFO (Small Intestinal Fungal Overgrowth), and IMO (Intestinal Methanogen Overgrowth). General gastrointestinal problems such as abdominal pain, bloating, gas, diarrhoea and constipation are the main symptoms of dysbiosis. They lead to malabsorption, nutrient deficiencies, anaemia and hypoproteinaemia. Increased lipopolysaccharide (LPS) permeability, stimulating the inflammatory response and resulting in chronic inflammation, has been identified as the leading cause of microbial overgrowth in the gut. The subject literature is extensive but of limited quality. Despite the recent interest in the gut microbiome and its disorders, more clinical research is needed to determine the pathophysiology, effective treatments, and prevention of small and large intestinal microbiota overgrowth. This review was designed to provide an overview of the available literature on intestinal microbial dysbiosis (SIBO, LIBO, SIFO and IMO) and to determine whether it represents a real threat to human health.
Milk is an exceptional nutritional product that has been used for many millennia in human nutrition. Milk is a source of many valuable nutrients, including calcium, vitamin B, an especially significant amount of vitamin B2 and fat-soluble vitamins, such as A, D and E. Milk is an attractive product for fortification as it has a high nutritional density in a small volume and a relatively low price. Research shows positive health effects of drinking milk and consuming dairy products. Even more health benefits can be obtained from consuming fortified dairy products. A literature review, current nutritional recommendations, medical recommendations and an analysis of the market situation all recommend introducing milk enriched with minerals in combination with vitamins to the market. This concept corresponds to the current market demand and may supplement the missing and expected range of fortified milk and the correct number of recipients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.