From a numerical solution of the master equation for hopping transport in a disordered energy landscape with a Gaussian density of states, we determine the dependence of the charge-carrier mobility on temperature, carrier density, and electric field. Experimental current-voltage characteristics in devices based on semiconducting polymers are excellently reproduced with this unified description of the mobility. At room temperature it is mainly the dependence on carrier density that plays an important role, whereas at low temperatures and high fields the electric field dependence becomes important. Omission in the past of the carrier-density dependence has led to an underestimation of the hopping distance and the width of the density of states in these polymers.
At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.