Conventional quenching and tempering were employed to achieve the optimal strength and toughness of low-carbon low-alloy steel. The fracture behavior (crack initiation and propagation) of the steel in the impact process was also analyzed. It was found that the microstructures of the steel after different tempering treatments were mainly composed of martensite, and its mechanical properties were dependent on the tempering temperature. With the increase in tempering temperature, martensitic laths merged and coarsened. Moreover, recovery occurred, causing a decrease in dislocation density. Subsequently, the strength of the steel gradually decreased, and the impact energy increased. When the tempering temperature was 600 °C, the optimal yield strength (557 MPa) and the impact energy (331 J) were achieved. In addition, high angle grain boundaries (HAGBs) affected the impact energy and crack propagation. Cracks were easily deflected when they encountered high angle grain boundaries, and linearly expanded when they encountered low angle grain boundaries (LAGBs).
Oxide metallurgy technology can improve the microstructure of a coarse-grained heat-affected zone (CGHAZ) but introduces extra inclusions. Local corrosion behavior of the CGHAZ of a Zr–Ti–Al–RE deoxidized steel was investigated in this work using theoretical calculations and experimental verification. The modified inclusions have a (Zr–Mg–Al–Ca–RE)Ox core claded by a CaS and TiN shell. CaS dissolves first, followed by the oxide core, leaving TiN parts. This confirms that the addition of rare earth can reduce lattice distortion and prevent a galvanic couple between the inclusions and the matrix, while the chemical dissolution of CaS causes localized acidification, resulting in the pitting corrosion initiation.
The effect of various heat inputs on the microstructure and impact toughness of the simulated coarse-grained heat-affected zone (CGHAS) of a niobium microalloyed (0.14 wt.%) low-carbon steel was studied. The results showed that higher impact toughness was achieved at a low heat input of 20 kJ/cm, which resulted from the formation of acicular ferrite laths/plates. They sectioned large prior austenite grains into many smaller regions, resulting in smaller crystallographic grains and high-angle grain boundaries. Conversely, when specimens were simulated with larger heat-inputs (100, 200 kJ/cm), the microstructure of the CGHAZ was predominantly composed of granular bainite plus massive MA constituents, thus impairing the impact toughness.
The effect of Nb-content and heat input rate on the mechanical properties and microstructure of simulated coarse-grained heat-affected zone (CGHAZ) of high-strength low-alloy steel (HSLA) was investigated. While using a low heat input (20 kJ/cm), the toughness of simulated CGHAZ was improved by increasing the Nb-content. The maximum toughness was obtained when the Nb-content was 0.110 wt.% and the heat input was 20 kJ/cm. The samples made at this condition had fine martensite/austenite (M/A-constituent), acicular ferrite and refined austenite grains. As the heat input was increased to 200 kJ/cm, the toughness of simulated CGHAZ was significantly decreased irrespective of the Nb-content because of the formation of coarse austenite grains, low angle grain boundaries, and massive M/A-constituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.