CD99 is involved in many cellular events, such as the generation of Hodgkin and Reed-Sternberg cells, T cell costimulation, and leukocyte transendothelial migration. However, these studies have been limited to in vitro or in vivo experiments using CD99-deficient cell lines or anti-CD99 antibodies. In the present study, using CD99-deficient mice established by the exchangeable gene trap method, we investigated the physiologic function of murine CD99. In a B6 splenocytes → bm12 graft-versus-host disease model, wild-type cells were minimally lethal, whereas all mice that received CD99-deficient donor cells developed an early and more severe pathology. Graftversus-host disease in these mice was associated with insufficient expansion of myeloid-derived suppressor cells. This was confirmed by experiments illustrating that the injection of wild-type donor cells depleted of Mac-1(+) cells led to an almost identical disease course as the CD99-deficient donor system. Therefore, these results suggest that CD99 plays a crucial role in the attenuation of graft-versus-host disease by regulating the expansion of myeloid-derived suppressor cells.
Here, we show that the interaction between two membrane proteins, the mouse homologue of CD99 (designated D4) and its ligand, paired immunoglobulin-like type 2 receptor (PILR), is one of the major mechanisms of thymocyte apoptosis. Using the polymeric fusion protein of PILR and IgG1 (PILR-Ig), we demonstrated that D4 ligation in the absence of T cell receptor (TCR) engagement leads to the induction of apoptosis, mainly at the double-positive stage of thymocytes. This was further confirmed by a blocking study in which blocking the interaction between D4 and PILR by soluble D4 protein led to reduced apoptosis in the fetal thymic organ culture with wild type and TCRα -/-mice. Furthermore, the dissection of intracellular signaling pathway demonstrated that D4 cross-linking led to caspase activation without any change in mitochondrial membrane potential. Based on these data, we propose a mechanism for thymocyte depletion in which the interaction between D4 and PILR delivers an active signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.