A single-domain protein catenane refers to two mechanically interlocked polypeptide rings that fold synergistically into a compact and integrated structure, which is extremely rare in nature. Herein, we report a single-domain protein catenane of dihydrofolate reductase (cat-DHFR). The design was achieved by rewiring the connectivity between secondary motifs to introduce artificial entanglement and the synthesis was readily accomplished by a series of programmed streamlined post-translational processing events in cells without any additional in vitro reactions. The target molecule contains few exogenous motifs and has been thoroughly characterized by combined techniques of LC-MS, SDS-PAGE, protease cleavage experiment, and ion mobility mass spectrometry. Compared to the linear control, cat-DHFR retains the catalytic capability and exhibits enhanced stability against thermal or chemical denaturation due to conformational restriction. The results suggest that linear proteins may be converted into concatenated single-domain counterparts with almost identical chemical composition, well-preserved function, and elevated stability, which represents an entirely new horizon in protein science.
A single-domain protein catenane refers to two mechanically interlocked polypeptide rings that fold synergistically into a compact and integrated structure, which is extremely rare in nature. Herein, we report a single-domain protein catenane of dihydrofolate reductase (cat-DHFR). The design was achieved by rewiring the connectivity between secondary motifs to introduce artificial entanglement and the synthesis was accomplished by a series of programmed streamlined post-translational processing events in cells. The target molecule contains few exogenous motifs and has been thoroughly characterized by combined techniques of LC-MS, SDS-PAGE, protease cleavage experiment, and ion mobility mass spectrometry. Compared to the linear control, cat-DHFR retains the catalytic capability and exhibits enhanced stability against thermal or chemical denaturation due to conformational restriction. The results suggest that linear proteins may be converted into concatenated single-domain counterparts with almost identical chemical composition, well-preserved function, and elevated stability, which represents an entirely new horizon in protein science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.