Neuroinflammation is considered to be an important and inevitable pathological process associated with all types of damages to, and disorders of, the central nervous system. The hallmark of neuroinflammation is the microglia activation. In response to different micro-environmental disturbances, microglia could polarize into either an M1 pro-inflammatory phenotype, exacerbating neurotoxicity, or an M2 anti-inflammatory phenotype, exerting neuroprotection. Therefore, shifting the polarization of microglia toward the M2 phenotype could possess a more viable strategy for the neuroinflammatory disorders treatment. Naringenin (NAR) is naturally a grapefruit flavonoid and possesses various kinds of pharmacological activities, such as anti-inflammatory and neuroprotective activities. In the present study, we aimed to investigate the potential effects of NAR on microglial M1/M2 polarization and further reveal the underlying mechanisms of actions. First, NAR inhibited lipopolysaccharide (LPS)-induced microglial activation. Then, NAR shifted the M1 pro-inflammatory microglia phenotype to the M2 anti-inflammatory M2 microglia state as demonstrated by the decreased expression of M1 markers (i.e., inducible TNF-α and IL-1β) and the elevated expression of M2 markers (i.e., arginase 1, IL-4, and IL-10). In addition, the effects of NAR on microglial polarization were dependent on MAPK signaling, particularly JNK inactivation, as evidenced by the fact that the selective activator of JNK abolished NAR-promoted M2 polarization and further NAR-inhibited microglial activation. Together, this study demonstrated that NAR promoted microglia M1/M2 polarization, thus conferring anti-neuroinflammatory effects via the inhibition of MAPK signaling activation. These findings might provide new alternative avenues for neuroinflammation-related disorders treatment.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases characterized with a gradual loss of midbrain substantia nigra (SN) dopamine (DA) neurons. An excessive evidence demonstrated that microglia-mediated inflammation might be involved in the pathogenesis of PD. Thus, inhibition of neuroinflammation might possess a promising potential for PD treatment. Icariin (ICA), a single active component extracted from the Herba Epimedii, presents amounts of pharmacological properties, such as anti-inflammation, anti-oxidant, and anti-aging. Recent studies show ICA produced neuroprotection against brain dysfunction. However, the mechanisms underlying ICA-exerted neuroprotection are fully illuminated. In the present study, two different neurotoxins of 6-hydroxydopamine (6-OHDA) and lipopolysaccharide (LPS)-induced rat midbrain DA neuronal damage were applied to investigate the neuroprotective effects of ICA. In addition, primary rat midbrain neuron-glia co-cultures were performed to explore the mechanisms underlying ICA-mediated DA neuroprotection. In vitro data showed that ICA protected DA neurons from LPS/6-OHDA-induced DA neuronal damage and inhibited microglia activation and pro-inflammatory factors production via the suppression of nuclear factor-κB (NF-κB) pathway activation. In animal results, ICA significantly reduced microglia activation and significantly attenuated LPS/6-OHDA-induced DA neuronal loss and subsequent animal behavior changes. Together, ICA could protect DA neurons against LPS- and 6-OHDA-induced neurotoxicity both in vivo and in vitro. These actions might be closely associated with the inhibition of microglia-mediated neuroinflammation.
Background Oxidative stress and neuroinflammation are considered the major central events in the process of Parkinson’s disease (PD). Nrf2 is a key regulator of endogenous defense systems. New finds have contacted activation of Nrf2 signaling with anti-inflammatory activities. Therefore, the outstanding inhibition of neuroinflammation or potent Nrf2 signaling activation holds a promising strategy for PD treatment. Icariin (ICA), a natural compound derived from Herba Epimedii , presents a number of pharmacological properties, including anti-oxidation, anti-aging and anti-inflammatory actions. Recent studies have confirmed ICA exerted neuroprotection against neurodegenerative disorders. However, the underlying mechanisms were not fully elucidated. Methods In the present study, mouse nigral stereotaxic injection of 6-hydroxydopamine (6-OHDA)-induced PD model was performed to investigate ICA-conferred dopamine (DA) neuroprotection. In addition, adult Nrf2 knockout mice and primary rat midbrain neuron-glia co-culture was applied to elucidate whether ICA-exerted neuroprotection was through an Nrf2-dependent mechanism. Results Results indicated that ICA attenuated 6-OHDA-induced DA neurotoxicity and glial cells-mediated neuroinflammatory response. Furtherly, activation of Nrf2 signaling pathway in glial cells participated in ICA-produced neuroprotection, as revealed by the following observations. First, ICA enhanced Nrf2 signaling activation in 6-OHDA-induced mouse PD model. Second, ICA failed to generate DA neuroprotection and suppress glial cells-mediated pro-inflammatory factors production in Nrf2 knockout mice. Third, ICA exhibited neuroprotection in primary neuron-glia co-cultures but not in neuron-enriched cultures (without glial cells presence). Either, ICA-mediated neuroprotection was not discerned after Nrf2 siRNA treatment in neuron-glia co-cultures. Conclusions Our findings identify that ICA attenuated glial cells-mediated neuroinflammation and evoked DA neuroprotection via an Nrf2-dependent manner. Electronic supplementary material The online version of this article (10.1186/s12974-019-1472-x) contains supplementary material, which is available to authorized users.
Background: Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease and characterized by slow and progressive loss of dopamine (DA) neurons in the midbrain substantia nigra. Microglia-mediated neuroinflammation has been considered as the major central event in the process of DA neuronal loss. Thus, inhibition of neuroinflammation could possess a more viable strategy for PD treatment. Naringenin (NAR), a natural flavanoid contained in citrus fruit and grapefruits, possesses amounts of pharmacological activities. Recent studies indicated that NAR produced neuroprotection against several neurological disorders. However, the mechanisms underlying NAR-generated neuroprotection are not fully illuminated. Methods: In the present study, rat nigral stereotaxic injection of lipopolysaccharide (LPS)-induced DA neuronal loss was performed to investigate NAR-mediated neuroprotection. In addition, BV-2 and MN9D cell lines were applied to explore the underlying mechanisms. Results: NAR protected DA neurons against LPS-induced neurotoxicity. Also, NAR suppressed microglial nod-like receptor protein 3 (NLRP3) inflammasome signaling activation and the subsequent pro-inflammatory factors release. In addition, NAR-mediated DA neuroprotection was dependent on the inhibition of microglial NLRP3 inflammasome activation, as evidenced by the observations that NAR-reduced pro-inflammatory factors production and further NAR-exerted DA neuroprotection against LPS-induced neuronal damage was not discerned after microglial NLRP3 siRNA treatment. Conclusions: This study demonstrated that NAR targeted microglial NLRP3 inflammasome to protect DA neurons against LPS-induced neurotoxicity. These findings suggest NAR might hold a promising therapeutic potential for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.