In eastern Africa, there are few long, high-quality records of environmental change at high altitudes, inhibiting a broader understanding of regional climate change. We investigated a Holocene lacustrine sediment archive from Lake Garba Guracha, Bale Mountains, Ethiopia, (3,950 m asl), and reconstructed high-altitude lake evaporation history using δ18O records derived from the analysis of compound-specific sugar biomarkers and diatoms. The δ18Odiatom and δ18Ofuc records are clearly correlated and reveal similar ranges (7.9‰ and 7.1‰, respectively). The lowest δ18O values occurred between 10–7 cal ka BP and were followed by a continuous shift towards more positive δ18O values. Due to the aquatic origin of the sugar biomarker and similar trends of δ18Odiatom, we suggest that our lacustrine δ18Ofuc record reflects δ18Olake water. Therefore, without completely excluding the influence of the ‘amount-effect’ and the ‘source-effect’, we interpret our record to reflect primarily the precipitation-to-evaporation ratio (P/E). We conclude that precipitation increased at the beginning of the Holocene, leading to an overflowing lake between ca. 10 and ca. 8 cal ka BP, indicated by low δ18Olake water values, which are interpreted as reduced evaporative enrichment. This is followed by a continuous trend towards drier conditions, indicating at least a seasonally closed lake system.
<p>Our knowledge of East African paleoclimate is largely based on marine core and paleolimnological reconstructions. Accordingly, more humid climatic conditions such as the African Humid Period (AHP) are usually associated with summer insolation-driven increased monsoonal precipitation and the movement of the Congo Air Boundary.</p><p>In order to contribute to this discussion and to reconstruct the paleoclimate of the afro-alpine Bale Mountains, Ethiopia, within the DFG Research Unit 2358 &#8216;The Mountain Exile Hypothesis: How humans benefited from and re-shaped African high-altitude ecosystems during Quaternary climate changes&#8217; we re-cored Lake Garba Guracha. This site represents one of the best dated Late Glacial - Holocene continuous, high altitude (3950 m asl) paleoenvironmental archives in East Africa.<br>We investigated sugar and lipid biomarkers and their compound-specific stable oxygen and hydrogen isotopic composition (&#948;<sup>18</sup>O<sub>sugar</sub> and &#948;<sup>2</sup>H<sub>n</sub><sub>-alkane</sub>) to infer past hydrological patterns. The &#948;<sup>18</sup>O<sub>sugar</sub> record reflects lake water and can thus be used to reconstruct lake evaporation history.</p><p>Our results suggest that a virtually permanent lake overflow existed from about 10 to 7 cal. ka BP, whereas the period from about 7 to 5 cal. ka BP is characterised by increased lake evaporation. We present initial results of &#948;<sup>18</sup>O<sub>diatom</sub> analyses and organic geochemical and XRF data that document dominant minerogenic input during the Late Glacial and increased input of almost exclusively aquatic organic matter from 11 cal. ka BP on. Reconstructed mean annual temperatures (n=20, -2.2 to 2.5&#176;C), inferred from brGDGT-based proxies, indicate that colder conditions prevailed in the high-altitude Bale Mountain ecosystem during the Younger Dryas.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.