Alkylating agents, such as temozolomide, are among the most effective cytotoxic agents used for malignant gliomas, but responses remain very poor. The DNA repair protein O 6 -methylguanine-DNA methyltransferase (MGMT) plays an important role in cellular resistance to alkylating agents. IFN-B can act as a drug sensitizer, enhancing toxicity against a variety of neoplasias, and is widely used in combination with other antitumor agents such as nitrosoureas. Here, we show that IFN-B sensitizes glioma cells that harbor the unmethylated MGMT promoter and are resistant to temozolomide. By means of oligonucleotide microarray and RNA interference, we reveal that the sensitizing effect of IFN-B was possibly due to attenuation of MGMT expression via induction of the protein p53. Our study suggests that clinical efficacy of temozolomide might be improved by combination with IFN-B using appropriate doses and schedules of administration. (Cancer Res 2005; 65(17): 7573-9)
RuCl 2 (phosphine) 2 (1,2-diamine) complexes, coupled with an alkaline base in 2-propanol, allows for preferential hydrogenation of a C=O function over coexisting conjugated or nonconjugated C=C linkages, a nitro group, halogen atoms, and various heterocycles. The functional group selectivity is based on the novel metal-ligand bifunctional mechanism. The use of appropriate chiral diphosphines and diamines results in rapid and productive asymmetric hydrogenation of a range of aromatic, hetero-aromatic, and olefinic ketones. The versatility of this method is manifested by the asymmetric synthesis of various biologically significant chiral compounds.
Gefitinib--a specific inhibitor of epidermal growth factor receptor (EGFR)-associated tyrosine kinase--has demonstrated efficacy in a subgroup of patients with non-small-cell lung carcinoma (NSCLC) who fail conventional chemotherapy. It is also reported to have an antitumor effect in brain metastases from NSCLC. Additionally, EGFR mutations have shown a strong association with gefitinib sensitivity for NSCLC. Here, we assessed the efficacy of gefitinib in brain metastases from NSCLC and evaluated the association of this efficacy with EGFR mutations. We retrospectively reviewed eight cases in which patients were suffering from brain metastases before the initiation of gefitinib treatment. Brain tumor response could be evaluated by MRI in these patients; EGFR gene analyses were also available. We evaluated whether objective tumor response was observed after gefitinib treatment and assessed the efficacy of gefitinib as effective, noneffective, or not assessable in consideration of the influence of previous radiotherapy. Of the eight patients, the efficacy of gefitinib was assessed as effective in three and as noneffective in three. All three patients demonstrating effective efficacy had EGFR mutations in the tyrosine kinase domain (deletion mutation in two patients and point mutation in one patients), whereas none of the three patients demonstrating noneffective efficacy had EGFR mutations. Gefitinib appears to be effective in treating brain metastases in a subgroup of patients. Our data suggested a possible association between the efficacy of gefitinib in the treatment of brain metastases and EGFR mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.