Mulberry (Morus alba L.) has been considered to possess different benefits such as protecting liver; improving fever, urine excretion disorder, hypertension, and diabetic syndrome; and preventing cardiovascular diseases. Recently, mounting evidence has shown that mulberry anthocyanin extract (MAE) is beneficial to hyperlipidemia; however, the mechanisms remain unclear. The present study was aimed to investigate the protective effects of MAE on hepatocyte cultured with high fatty acid and the underlying mechanisms. By using human hepatoma cell HepG2 as cell model, the results showed that MAE suppressed fatty acid synthesis and enhanced fatty acid oxidation, contributing to amelioration of lipid accumulation induced by oleic acid (OA). Moreover, MAE also inhibited acetyl coenzyme A carboxylase (ACC) activities by stimulating adenosine monophosphate-activated protein kinase (AMPK). MAE attenuated the expression of sterol regulatory element-binding protein-1 (SREBP-1) and its target molecules, such as fatty acid synthase (FAS). Similar results were also found in the expressions of enzymes involved in triglyceride and cholesterol biosyntheses including glycerol-3-phosphate acyltransferase (GPAT), 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCoR), adipocyte-specific fatty acid binding protein (A-FABP), and SREBP-2. In contrast, the lipolytic enzyme expressions of peroxisome proliferator activated receptor α (PPARα) and carnitinepalmitol- transferase-1 (CPT1) were increased. This study suggests the hypolipidemic effects of MAE occur via phosphorylation of AMPK and inhibition of lipid biosynthesis and stimulation of lipolysis. Therefore, the mulberry anthocyanins may actively prevent nonalcoholic fatty liver disease.
Fracture healing involves rapid stem and progenitor cell migration, homing, and differentiation. SDF-1 (CXCL12) is considered a master regulator of CXCR4-positive stem and progenitor cell trafficking to sites of ischemic (hypoxic) injury and regulates their subsequent differentiation into mature reparative cells. In this study, we investigated the role of SDF-1/CXCR4 signaling in fracture healing where vascular disruption results in hypoxia and SDF-1 expression. Mice were injected with AMD3100, a CXCR4 antagonist, or vehicle twice daily until euthanasia with the intent to impair stem cell homing to the fracture site and/or their differentiation. Fracture healing was evaluated using micro-computed tomography, histology, quantitative PCR, and mechanical testing. AMD3100 administration resulted in a significantly reduced hyaline cartilage volume (day 14), callus volume (day 42) and mineralized bone volume (day 42) and reduced expression of genes associated with endochondral ossification including collagen Type 1 alpha 1, collagen Type 2 alpha 1, vascular endothelial growth factor, Annexin A5, nitric oxide synthase 2, and mechanistic target of rapamycin. Our data suggest that the SDF-1/CXCR4 signaling plays a central role in bone healing possibly by regulating the recruitment and/or differentiation of stem and progenitor cells.
Mulberry (Morus alba) leaf has been used in Chinese medicine as the remedy for hyperlipidemia and metabolic disorders. Recent report indicated Mulberry leaf extract (MLE) attenuated dyslipidemia and lipid accumulation in high fat diet (HFD)-fed mice. Non-alcoholic fatty liver (NAFLD) is generally considered as the liver component of metabolic syndrome. The hepatic lipid infiltration induces oxidative stress, and is associated with interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) which are regulated by the leptin and adiponectin. MLE could prevent obesity-related NAFLD via downregulating the lipogenesis enzymes while upregulating the lipolysis markers. Treatment of MLE, especially at 2%, enhanced the expression of superoxide dismutase (SOD) and clenched the oxidative stress of liver. MLE decreased the plasma level of leptin but increased adiponectin. The advantage of MLE is supposed mainly attributed to chlorogenic acid derivative. We suggest MLE, with promising outcome of research, could be nutraceutical to prevent obesity and related NAFLD.
The present study examined the effects of human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs) delivered through the basilar artery in a canine thromboembolic brain ischemia model. Cerebral ischemia was induced through occlusion of the middle cerebral artery by injecting thrombus emboli into 10 beagles. In the HUCBC group (n = 5), 1 x 10(6) HUCB-derived MSCs were transplanted through the basilar artery 1 day after ischemic induction using an endovascular interventional approach. In the control group (n = 5), phosphate-buffered saline (PBS) was injected in the same manner in as the HUCBC group. Upon neurobehavioral examination, earlier recovery was observed in the HUCBC group. The HUCBC group showed a decrease in the infarction volume at 1 week after cerebral ischemic induction, whereas the control group showed an increase in the infarction volume at 1 week, by magnetic resonance image analysis. Transplanted cells had differentiated into neurons and astrocytes and were observed in and around endothelial cells that were positive for von Willebrand factor (vWF). HUCB-derived MSCs expressed neuroprotective factors, such as brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), at 4 weeks after the transplantation. The transplanted cells demonstrated their efficacy by reducing the infarction lesion volume and through earlier recovery from the neurological deficit. These results suggest that intraarterial transplantation of HUCB-derived MSCs could be useful in clinical treatment of cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.