The aim of this study was to investigate the correlations between serum calcium and clinical outcomes in patients with coronavirus disease 2019 (COVID-19). In this retrospective study, serum calcium levels, hormone levels and clinical laboratory parameters on admission were recorded. The clinical outcome variables were also recorded. From February 10 to February 28, 2020, 241 patients were enrolled. Of these patients, 180 (74.7%) had hypocalcemia on admission. The median serum calcium levels were 2.12 (IQR, 2.04-2.20) mmol/L, median parathyroid hormone (PTH) levels were 55.27 (IQR, 42.73-73.15) pg/mL, and median 25-hydroxyvitamin D (VD) levels were 10.20 (IQR, 8.20-12.65) ng/mL. The serum calcium levels were significantly positively correlated with VD levels (P =0.004) but negatively correlated with PTH levels (P =0.048). Patients with lower serum calcium levels (especially ≤2.0 mmol/L) had worse clinical parameters, higher incidences of organ injury and septic shock, and higher 28-day mortality. The areas under the receiver operating characteristic curves of multiple organ dysfunction syndrome, septic shock, and 28-day mortality were 0.923 (P <0.001), 0.905 (P =0.001), and 0.929 (P <0.001), respectively. In conclusion, serum calcium was associated with the clinical severity and prognosis of patients with COVID-19. Hypocalcemia may be associated with imbalanced VD and PTH levels.
The authors investigate the crystallinity and surface effects on Young’s modulus of cupric oxide (CuO) nanowires by performing three-point bend test using atomic force microscopy. Young’s modulus of the nanowires obtained ranges from 70to300GPa and is dependent on two factors. Firstly, it depends on whether the nanowire is mono- or polycrystalline, as indicated by the absence or presence of an amorphous surface layer. Second, the modulus increases with decreasing diameter for both types of nanowires. Combined with transmission electron microscopy and computational simulation studies, the nanostructure-mechanical property relationship of CuO nanowires is elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.