Cryo-electron microscopy (cryo-EM) has recently emerged as a powerful tool for obtaining three-dimensional (3D) structures of biological macromolecules in native states. A minimum cryo-EM image data set for deriving a meaningful reconstruction is comprised of thousands of randomly orientated projections of identical particles photographed with a small number of electrons. The computation of 3D structure from 2D projections requires clustering, which aims to enhance the signal to noise ratio in each view by grouping similarly oriented images. Nevertheless, the prevailing clustering techniques are often compromised by three characteristics of cryo-EM data: high noise content, high dimensionality and large number of clusters. Moreover, since clustering requires registering images of similar orientation into the same pixel coordinates by 2D alignment, it is desired that the clustering algorithm can label misaligned images as outliers. Herein, we introduce a clustering algorithm γ-SUP to model the data with a q-Gaussian mixture and adopt the minimum γ-divergence for estimation, and then use a self-updating procedure to obtain the numerical solution. We apply γ-SUP to the cryo-EM images of two benchmark macromolecules, RNA polymerase II and ribosome. In the former case, simulated images were chosen to decouple clustering from alignment to demonstrate γ-SUP is more robust to misalignment outliers than the existing clustering methods used in the cryo-EM community. In the latter case, the clustering of real cryo-EM data by our γ-SUP method eliminates noise in many views to reveal true structure features of ribosome at the projection level.
This paper examines a longitudinal shape evolution model in which a 3D volume progresses through a family of elastic equilibria in response to the time-derivative of an internal force, or yank, with an additional regularization to ensure diffeomorphic transformations. We consider two different models of yank and address the long time existence and uniqueness of solutions for the equations of motion in both models. In addition, we derive sufficient conditions for the existence of an optimal yank that best describes the change from an observed initial volume to an observed volume at a later time. The main motivation for this work is the understanding of processes such as growth and atrophy in anatomical structures, where the yank could be roughly interpreted as a metabolic event triggering morphological changes. We provide preliminary results on simple examples to illustrate, under this model, the retrievability of some attributes of such events.
We study a shape evolution framework in which the deformation of shapes from time t to t+dt is governed by a regularized anisotropic elasticity model. More precisely, we assume that at each time shapes are infinitesimally deformed from a stress-free state to an elastic equilibrium as a result of the application of a small force. The configuration of equilibrium then becomes the new resting state for subsequent evolution. The primary motivation of this work is the modeling of slow changes in biological shapes like atrophy, where a body force applied to the volume represents the location and impact of the disease. Our model uses an optimal control viewpoint with the time derivative of force interpreted as a control, deforming a shape gradually from its observed initial state to an observed final state. Furthermore, inspired by the layered organization of cortical volumes, we consider a special case of our model in which shapes can be decomposed into a family of layers (forming a "foliation"). Preliminary experiments on synthetic layered shapes in two and three dimensions are presented to demonstrate the effect of elasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.