Recent genetic studies using high-throughput sequencing have disclosed genetic alterations in B-cell precursor acute lymphoblastic leukemia (B-ALL). However, their effects on clinical outcomes have not been fully investigated. To address this, we comprehensively examined genetic alterations and their prognostic impact in a large series of pediatric B-ALL cases. We performed targeted capture sequencing in a total of 1003 pediatric patients with B-ALL from 2 Japanese cohorts. Transcriptome sequencing (n = 116) and/or array-based gene expression analysis (n = 120) were also performed in 203 (84%) of 243 patients who were not categorized into any disease subgroup by panel sequencing or routine reverse transcription polymerase chain reaction analysis for major fusions in B-ALL. Our panel sequencing identified novel recurrent mutations in 2 genes (CCND3 and CIC), and both had positive correlations with ETV6-RUNX1 and hypodiploid ALL, respectively. In addition, positive correlations were also newly reported between TCF3-PBX1 ALL with PHF6 mutations. In multivariate Cox proportional hazards regression models for overall survival, TP53 mutation/deletion, hypodiploid, and MEF2D fusions were selected in both cohorts. For TP53 mutations, the negative effect on overall survival was confirmed in an independent external cohort (n = 466). TP53 mutation was frequently found in IGH-DUX4 (5 of 57 [9%]) ALL, with 4 cases having 17p LOH and negatively affecting overall survival therein, whereas TP53 mutation was not associated with poor outcomes among NCI (National Cancer Institute) standard risk (SR) patients. A conventional treatment approach might be enough, and further treatment intensification might not be necessary, for patients with TP53 mutations if they are categorized into NCI SR.
Although survival rate for children with Acute Lymphoblastic Leukemia (ALL) now exceeds about 90%, the outcome of adult patients with ALL is extremely poor. These differences might be attributed to the lack of insights into pathogenesis and clinical behavior of adult-ALL. Gross chromosomal alterations including chromosome translocations and aneuploidy are considered as early events in ALL and constitute disease subtypes. To identify chromosome translocations underlying adult with Ph-negative B-ALL, we performed RNA-seq analysis on RNA from individuals with B-ALL who had been treated on the Japan Adult Leukemia Study Group (JALSG) ALL202-O protocol (n = 149). We successfully identified chromosome translocations in 100 patients (67.1%). ZNF384 fusions were most frequently detected in 30 patients (20.1%) and they had wide range of fusion partners. DUX4- and MEF2D- fusions were also recurrently found in 7 (4.7%) and 9 (6.0%) patients, respectively. Chromosome translocations activating kinase and cytokine receptor were found in 25 patients (16.8%) with Ph-like gene expression profile. These alterations were almost completely mutually exclusive indicating these are likely to be primary genetic events. For simplicity, here we define (1) fusions involving ZNF384, DUX4, MEF2D, CEBP and PAX5 as well as TCF3-PBX1 and ETV6-RUNX1 as Transcription Factor fusions (TF fusions; 49% of patients), (2) fusions involving CRLF2, JAK2, PDGFRB, EPOR and ABL as Kinase/cytokine-receptor Activating fusions (KA fusions; 15%) and (3) non-recurrent fusions or the absence of fusions/aneuploidy as B-others (30%). First, we analyzed impact of the patient age on types of fusion genes, based of combined data of ALL202-O cohort, childhood B-ALL cohort (Lilljebjörn H, et al. 2016: n = 189) and ALL202-U cohort (Yasuda T, et al. 2016: n = 54). We found that incidence of ZNF384-, CEBP- fusions and B-others increases as patients age, whereas ETV6-RUNX1 and PAX5 fusions were more prevalent in younger patients, exhibiting negative association with age. DUX4 fusions and TF fusions were most prevalent in Adolescent and Young Adult (AYA) generation. JAK2-, PDGFRB-, EPOR- and KA- fusions were positively correlated with age. Next, we analyzed association between patient survival and types of fusions. In Japanese adult B-ALL cohort (ALL202-O and ALL202-U cohort), we observed ZNF384-, DUX4- fusions and TCF3-PBX1 were associated with better disease-free survival than B-others. Furthermore, when combined, MEF2D- (n = 14), CEBP- (n = 4), PAX5- fusions (n = 2) and ETV6-RUNX1 (n = 2) exhibited significantly better disease-free survival than B-others, indicating TF fusions were associated with an improved outcome. In contrast, KA fusions were associated with poorer disease-free survival than B-others. KMT2A fusions were comparable with B-others regarding to patient disease-free survival. These results allowed us to develop a prognostic schema to identify three distinct risk profile groups, based on types of fusion genes and cytogenetics (Table1); favorable-risk (5-year rate of disease-free survival 67.4%), intermediate-risk (5-year rate of disease-free survival 42.5%) and adverse-risk (5-year rate of disease-free survival 9.6%). This prognostic schema predicted the outcome independently of age, sex and methotrexate dose in multivariate analysis (p < 0.001). In conclusion, we promoted a better understanding of the genetic basis of adult B-ALL by focusing on fusion genes. Each chromosome translocations were closely associated with age. ZNF384-, KA fusions and B-others were characteristic for older-adult patients (40-65 years old) with B-ALL. We clearly demonstrated specific primary chromosome abnormalities are strong prognostic marker. Functional properties of primary genetic events (TF fusions vs. KA fusions) might be a key determinant of biological characteristics and clinical outcome. Disclosures Kiyoi: Novartis Pharma K.K.: Research Funding; Celgene Corporation: Research Funding; Zenyaku Kogyo Co., Ltd.: Research Funding; FUJIFILM Corporation: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding; Bristol-Myers Squibb: Honoraria; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Sanofi K.K.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Astellas Pharma Inc.: Research Funding; Phizer Japan Inc.: Research Funding; Eisai Co., Ltd.: Research Funding. Naoe:Astellas Pharma Inc.: Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Pfizer Japan Inc.: Research Funding; Toyama Chemical Co., Ltd.: Research Funding.
Although next‐generation sequencing‐based panel testing is well practiced in the field of cancer medicine for the identification of target molecules in solid tumors, the clinical utility and clinical issues surrounding panel testing in hematological malignancies have yet to be fully evaluated. We conducted a multicenter prospective clinical sequencing study to verify the feasibility of a panel test for hematological tumors, including acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma, and diffuse large B‐cell lymphoma. Out of 96 eligible patients, 79 patients (82%) showed potentially actionable findings, based on the clinical sequencing assays. We identified that genetic alterations with a strong clinical significance were found at a higher frequency in terms of diagnosis (n = 60; 63%) and prognosis (n = 61; 64%) than in terms of therapy (n = 8; 8%). Three patients who harbored a germline mutation in either DDX41 (n = 2) or BRCA2 (n = 1) were provided with genetic counseling. At 6 mo after sequencing, clinical actions based on the diagnostic (n = 5) or prognostic (n = 3) findings were reported, but no patients were enrolled in a clinical trial or received targeted therapies based on the sequencing results. These results suggest that panel testing for hematological malignancies would be feasible given the availability of useful diagnostic and prognostic information. This study is registered with the UMIN Clinical Trial Registry (UMIN000029879, multiple myeloma; UMIN000031343, adult acute myeloid leukemia; UMIN000033144, diffuse large B‐cell lymphoma; and UMIN000034243, childhood leukemia).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.