The entire auditing process is complicated and tedious and requires a lot of human resources. Therefore, the intelligent development of auditing is the general trend. In order to improve the audit quality, this paper establishes an intelligent financial audit model that can predict the audit opinion of the consolidated financial statements. This paper proposes an audit opinion prediction model based on the fusion of deep belief neural network (DBN) and long-short term memory (LSTM). First, an indicator system is established for audit opinions, and multiple financial parameters are used to describe possible audit opinions. On this basis, a DBN network is designed to complete deep feature extraction and used for LSTM training. According to the prediction model obtained by training, the subsequent audit opinion can be scientifically predicted. In the experiment, the method in this paper is tested based on financial audit related data sets and compared with the prediction results of traditional multilayer perceptron (MLP), convolutional neural network (CNN), and LSTM models. The results verify the validity and reliability of the model in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.