In this paper, a methodology for design of fuzzy Kalman filter, using interval type-2 fuzzy models, in discrete time domain, via spectral decomposition of experimental data, is proposed. The adopted methodology consists of recursive parametric estimation of local state space linear submodels of interval type-2 fuzzy Kalman filter for tracking and forecasting of the dynamics inherited to experimental data, using an interval type-2 fuzzy version of Observer/Kalman Filter Identification (OKID) algorithm. The partitioning of the experimental data is performed by interval type-2 fuzzy Gustafson–Kessel clustering algorithm. The interval Kalman gains in the consequent proposition of interval type-2 fuzzy Kalman filter are updated according to unobservable components computed by recursive spectral decomposition of experimental data. Computational results illustrate the efficiency of proposed methodology for filtering and tracking the time delayed state variables of Chen’s chaotic attractor in a noisy environment, and experimental results illustrate its applicability for adaptive and real time forecasting the dynamic spread behavior of novel Coronavirus 2019 (COVID-19) outbreak in Brazil.
Neste artigo é proposta uma metodologia para o projeto de filtro de Kalman fuzzy usando modelos fuzzy tipo-2 intervalares (IT2FKF), no domínio do tempo discreto, via decomposição espectral de dados experimentais. A metodologia adotada consiste na estimação paramétrica recursiva dos submodelos lineares locais no espaçco de estados de um modelo fuzzy tipo-2 intervalar, referente ao sistema dinâmico, por meio do algoritmo Observer/KalmanFilter Identication (OKID). O particionamento dos dados experimentais e realizado pelo algoritmo de agrupamento fuzzy Gustafson-Kessel (GK) tipo-2 intervalar. Os ganhos de Kalman intervalares no consequente das regras do IT2FKF, bem como a estimação da covariância do ruído de medição, são atualizados em função das componentes não observáveis resultantes da decomposição espectral recursiva dos dados experimentais ruidosos. Resultados computacionaisilustram a eficiência da metodologia proposta quando comparada a abordagens relevantes da literatura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.