In this paper we deal with optimality conditions that can be verified by a nonlinear optimization algorithm, where only a single Lagrange multiplier is avaliable. In particular, we deal with a conjecture formulated in [R. Andreani, J.M. Martínez, M.L. Schuverdt, "On second-order optimality conditions for nonlinear programming", Optimization, 56:529-542, 2007], which states that whenever a local minimizer of a nonlinear optimization problem fulfills the Mangasarian-Fromovitz Constraint Qualification and the rank of the set of gradients of active constraints increases at most by one in a neighborhood of the minimizer, a second-order optimality condition that depends on one single Lagrange multiplier is satisfied. This conjecture generalizes previous results under a constant rank assumption or under a rank deficiency of at most one. In this paper we prove the conjecture under the additional assumption that the Jacobian matrix has a smooth singular value decomposition, which is weaker than previously considered assumptions. We also review previous literature related to the conjecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.