The legacy of pre-Columbian land use in the Amazonian rainforest is one of the most controversial topics in the social and natural sciences. Until now, the debate has been limited to discipline-specific studies, based purely on archaeological data, modern vegetation, modern ethnographic data or a limited integration of archaeological and palaeoecological data. The lack of integrated studies to connect past land use with modern vegetation has left questions about the legacy of pre-Columbian land use on the modern vegetation composition in the Amazon, unanswered. Here, we show that persistent anthropogenic landscapes for the past 4,500 years have had an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. We found an abrupt enrichment of edible plant species in fossil lake and terrestrial records associated with pre-Columbian occupation. Our results demonstrate that, through closed-canopy forest enrichment, limited clearing for crop cultivation and low-severity fire management, long-term food security was attained despite climate and social changes. Our results suggest that, in the eastern Amazon, the subsistence basis for the development of complex societies began ~4,500 years ago with the adoption of polyculture agroforestry, combining the cultivation of multiple annual crops with the progressive enrichment of edible forest species and the exploitation of aquatic resources. This subsistence strategy intensified with the later development of Amazonian dark earths, enabling the expansion of maize cultivation to the Belterra Plateau, providing a food production system that sustained growing human populations in the eastern Amazon. Furthermore, these millennial-scale polyculture agroforestry systems have an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. Together, our data provide a long-term example of past anthropogenic land use that can inform management and conservation efforts in modern Amazonian ecosystems.
During the last two decades, new archaeological projects which systematically integrate a variety of plant recovery techniques, along with palaeoecology, palaeoclimate, soil science and floristic inventories, have started to transform our understanding of plant exploitation, cultivation and domestication in tropical South America. Archaeobotanical studies are providing a far greater appreciation of the role of plants in the diets of early colonists. Since~13ka, these diets relied mainly on palm, tree fruits, and underground tubers, along with terrestrial and riverine faunal resources. Recent evidence indicates two areas of precocious plant cultivation and domestication: the sub-Andean montane forest of NW South America and the shrub savannahs and seasonal forests of SW Amazonia. In the latter area, thousands of anthropic keystone structures represented by forest islands show a significant human footprint in Amazonia from the start of the Holocene. While radiocarbon date databases show a decline in population during the middle Holocene, important developments happened during this epoch, including the domestication of cacao, the adoption of maize and the spread of manioc across the basin. The late Holocene witnessed the domestication of rice and the development of agricultural landscapes characterised by raised fields and Amazonian Dark Earths (ADEs). Our multi-proxy analysis of 23 late Holocene ADEs and two lakes from southern Amazonia provides the first direct evidence of field polyculture agriculture including the cultivation of maize, manioc, sweet potato, squash, arrowroot and leren within closed-canopy forest, as well as enrichment with palms, limited clearing for crop cultivation, and low-severity fire management. Collectively, the evidence shows that during the late Holocene Amazonian farmers engaged in intensive agriculture marked by the cultivation of both annual and perennial crops relying on organic amendments requiring soil preparation and maintenance. Our study has broader implications for sustainable Amazonian futures.
The long term response of ancient societies to climate change has been a matter of global debate. Until recently, the lack of integrative studies between archaeological, palaeoecological, and palaeoclimatological data had prevented an evaluation of the relationship between climate change, distinct subsistence strategies, and cultural transformations across the largest rainforest of the world, Amazonia. Here, we review the most relevant cultural changes seen in the archaeological record of six different regions within Greater Amazonia during late pre-Columbian times. We compare the chronology of those cultural transitions with high-resolution regional palaeoclimate proxies, showing that, while some societies faced major reorganisation during periods of climate change, others were unaffected and even flourished. We propose that societies with intensive, specialised land-use systems were vulnerable to transient climate change. In contrast, land-use systems that relied primarily on polyculture agroforestry, resulting in the formation of enriched forests and fertile Amazonian Dark Earths in the long term, were more resilient to climate change.
Anthropogenic climate change driven by increased carbon emissions is leading to more severe fire seasons and increasing the frequency of mega-fires in the Amazon. This has the potential to convert Amazon forests from net carbon sinks to net carbon sources. Although modern human influence over the Earth is substantial, debate remains over when humans began to dominate Earth's natural systems. To date, little is known about the history of human land use in key regions like the Amazon. Here, we examine the history of human occupation from a ∼8,500 year-old sediment core record from Lake Caranã (LC) in the eastern Amazon. The onset of pre-Columbian activity at LC (∼4,500 cal yr B.P.) is associated with the beginning of fire management and crop cultivation, later followed by the formation of Amazonian Dark Earth soils (ADEs) ∼2,000 cal yr B.P. Selective forest enrichment of edible plants and low-severity fire activity altered the composition and structure of forests growing on ADEs (ADE forests) making them more drought susceptible and fire-prone. Following European colonization (1661 A.D.), the Amazon rubber boom (mid-1800s to 1920 A.D.) is associated with record-low fire activity despite drier regional climate, indicating fire exclusion. The formation of FLONA Reserve in 1974 A.D. is accompanied by the relocation of traditional populations and a fire suppression policy. Despite suppression efforts, biomass burning and fire severity in the past decade is higher than any other period in the record. This is attributed to combined climate and human factors which create optimal conditions for mega-fires in ADE forests and threatens to transform the Amazon from a net carbon sink to a net carbon source. To help mitigate the occurrence of mega-fires, a fire management policy reducing fire-use and careful fire management for farming may help to reduce fuel loads and the occurrence of mega-fires in fire-prone ADE forests. As both natural and anthropogenic pressures are projected to increase in the Amazon, this study provides valuable insights into the legacy of past human land use on modern ADE forest composition, structure, and flammability that can inform ecological benchmarks and future management efforts in the eastern Amazon.
Anthropogenic soils known as Amazonian Dark Earths (ADEs) have long been known as a key component of subsistence systems for various pre-Columbian Amazonian populations. Often treated as a single category, ADE systems consist of two broad anthrosols (human-modified soils): the darker ADE (traditionally known as terra preta) and a lighter brown Amazonian Brown Earth (ABE; traditionally known as terra mulata). Data on the characteristics and spatial distribution of these anthrosols are severely lacking. Transects of soil test pits at the Triunfo and Versalles archaeological sites in the Iténez Forest, in the Bolivian Amazon, show variability in the distribution of soil types, revealing aspects of settlement organisation and resource management. Geochemical, isotopic and archaeobotanical data from an ADE, ABE and control soil profile from the Triunfo site, established ca. 500 cal BCE, characterise the two anthrosols as distinct components of a polyculture agroforestry subsistence system that combines anthropogenic soil fertilisation, closed-canopy forest enrichment, limited forest clearance for crop cultivation and low-severity fire management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.