Poisson distribution is widely used to model count data, however it has the disadvantage the assumption that the data must have equal mean and variance, which is not always true, since in many situations the phenomenon of overdispersion (variance greater than average) or underdispersion (variance lower than average) is common. Thus, we work with the hyper-Poisson distribution, which may accomodate data with overdispersion or underdispersion. The hyper-Poisson model is investigated here in two distinct scenarios, first modeling observable random variables in counting problems, and secondly representing an unobservable (latent) variable used in survival analysis models. In the first scenario, we take a classic approach for the estimation of the parameters of the hyper-Poisson distribution and we developed the usual likelihood ratio test, together with the gradient test to test the model dispersion parameter. In the survival analysis, we propose a new cure rate model induced by frailty discrete with hyper-Poisson probability distribution, since it is important to choose a distribution that takes into account the dispersion of risk factors. For this new model we developed inferential procedures from the classical and bayesian perspectives. All the models worked were analyzed through simulation studies and applied to real data sets.
"Este artigo apresenta uma prática experienciada com as tecnologias digitais no Programa Residência Pedagógica, utilizando o aplicativo Giphy. O objetivo é analisar as possibilidades de aprendizagem por meio do Giphy na produção do gênero textual meme, no viés do campo de atuação Jornalístico-Midiático e no desenvolvimento da competência 7 da BNCC. Trata-se de uma proposta pedagógica experimental, que analisa a prática com uma Sequência Didática – SD de modelo genebrino e a construção de sentidos em produções discentes elaboradas a partir da temática Consciência Negra. Por meio deste estudo, foi possível verificar que o Giphy é uma ferramenta propícia para a produção de memes que, atrelada à SD, pode favorecer tanto a inserção dos aprendizes em práticas de linguagem com a cultura digital quanto a criticidade diante da problemática social do racismo."
Palavras-chave: Métodos de comparações múltiplas, controle da FWER, melhoramentos do método de Bonferroni, método de Simes, estatísticas dependentes, dados censurados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.