Cystic hydatid disease (CHD) is caused by infection with Echinococcus granulosus metacestodes and affects humans and livestock. Proteins secreted or excreted by protoscoleces, pre-adult worms found in the metacestode, are thought to play fundamental roles in the host-parasite relationship. In this work, we performed an LC-MS/MS proteomic analysis of the excretory-secretory products obtained from the first 48 h of an in vitro culture of the protoscoleces. We identified 32 proteins, including 18 that were never detected previously in metacestode proteomic studies. Among the novel identified excretory-secretory products are antigenic proteins, such as EG19 and P-29 and a calpain protease. We also identified other important protoscolex excretory-secretory products, such as thioredoxin peroxidase and 14-3-3 proteins, which are potentially involved in evasion mechanisms adopted by parasites to establish infection. Several intracellular proteins were found in the excretory-secretory products, revealing a set of identified proteins not previously thought to be exposed at the host-parasite interface. Additionally, immunological analyses established the antigenic profiles of the newly identified excretory-secretory products and revealed, for the first time, the in vitro secretion of the B antigen by protoscoleces. Considering that the excretory-secretory products obtained in vitro might reflect the products released and exposed to the host in vivo, our results provide valuable information on parasite survival strategies in adverse host environments and on the molecular mechanisms underpinning CHD immunopathology.
BackgroundAntigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states.Methodology/Principal FindingsThe subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability.Conclusions/SignificanceFor the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
BackgroundAlzheimer’s disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets.MethodsIn this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing.ResultsWe identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat).ConclusionsUsing a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD.Electronic supplementary materialThe online version of this article (10.1186/s13195-018-0394-7) contains supplementary material, which is available to authorized users.
The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.