Ploidy manipulation is an efficient technique for the development of novel phenotypes in plant breeding. However, in rice (Oryza sativa L.), severe seed sterility has been considered a barrier preventing cultivation of autotetraploids since the 1930s. Recently, a series of studies identified two fertile autotetraploids, identified herein as the PMeS (Polyploid Meiosis Stability) and Neo-Tetraploid lines. Here, we summarize their characteristics, focusing on the recovery of seed fertility, and discuss potential future directions of study in this area, providing a comprehensive understanding of current progress in the study of fertile tetraploid rice, a classical, but promising, concept for rice breeding.
Hybrid sterility is a reproductive barrier that prevents gene flow between species. In Oryza species, some hybrid sterility loci, which are classified as gamete eliminators, cause pollen and seed sterility and sex-independent transmission ratio distortion (siTRD) in hybrids. However, the molecular basis of siTRD has not been fully characterized because of lacking information on causative genes. Here, we analyze one of the hybrid sterility loci, S2, which was reported more than forty years ago but has not been located on rice chromosomes. Hybrids between African rice (Oryza glaberrima) and a near-isogenic line that possesses introgressed chromosomal segments from Asian rice (Oryza sativa) showed sterility and siTRD, which confirms the presence of the S2 locus. Genome-wide SNP marker survey revealed that the near-isogenic line has an introgression on chromosome 4. Further substitution mapping located the S2 locus between 22.60 Mb and 23.54 Mb on this chromosome. Significant TRD in this chromosomal region was also observed in a calli population derived from cultured anther in hybrids of another cross combination of African and Asian rice species. This indicates that the pollen abortion caused by the S2 locus occurs before callus induction in anther culture. It also suggests the wide existence of the S2-mediated siTRD in this interspecific cross combination. Chromosomal location of the S2 locus will be valuable for identifying causative genes and for understanding of the molecular basis of siTRD.
BackgroundTo investigate plant hybrid sterility, we studied interspecific hybrids of two cultivated rice species, Asian rice (Oryza sativa) and African rice (O. glaberrima). Male gametes of these hybrids display complete sterility owing to a dozen of hybrid sterility loci, termed HS loci, but this complicated genetic system remains poorly understood.ResultsMicrospores from these interspecific hybrids form sterile pollen but are viable at the immature stage. Application of the anther culture (AC) method caused these immature microspores to induce callus. The segregation distortion of 11 among 13 known HS loci was assessed in the callus population. Using many individual calli, fine mapping of the HS loci was attempted based on heterozygotes produced from chromosome segment substitution lines (CSSLs). Transmission ratio distortion (TRD) from microspores was detected at 6 of 11 HS loci in the callus population. The fine mapping of S1 and S19 loci using CSSLs revealed precise distances of markers from the positions of HS loci exhibiting excessive TRD.ConclusionsWe demonstrated that AC to generate callus populations derived from immature microspores is a useful methodology for genetic study. The callus population facilitated detection of TRD at multiple HS loci and dramatically shortened the process for mapping hybrid sterility genes.Electronic supplementary materialThe online version of this article (10.1186/s13007-018-0370-z) contains supplementary material, which is available to authorized users.
Title 7Diploid male gametes circumvent hybrid sterility between Asian and African rice 8 species 9
Observing chromosomes is a time-consuming and labor-intensive process, and chromosomes have been analyzed manually for many years. In the last decade, automated acquisition systems for microscopic images have advanced dramatically due to advances in their controlling computer systems, and nowadays it is possible to automatically acquire sets of tiling-images consisting of large number, more than 1,000, of images from large areas of specimens. However, there has been no simple and inexpensive system to efficiently select images containing mitotic cells among these images. In this paper, a classification system of chromosomal images by deep learning artificial intelligence (AI) that can be easily handled by non-data scientists was applied. With this system, models suitable for our own samples could be easily built on a Macintosh computer with Create ML. As examples, models constructed by learning using chromosome images derived from various plant species were able to classify images containing mitotic cells among samples from plant species not used for learning in addition to samples from the species used. The system also worked for cells in tissue sections and tetrads. Since this system is inexpensive and can be easily trained via deep learning using scientists' own samples, it can be used not only for chromosomal image analysis but also for analysis of other biology-related images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.