Yes-associated protein 1 (YAP1) interacts with numerous transcription factors, including TEA-domain family proteins (TEAD) and p73. YAP1 is negatively regulated by the tumor suppressor Hippo pathway. In human cancers, the deregulation of the Hippo pathway and YAP1 gene amplification lead to the activation of YAP1, which induces epithelial-mesenchymal transition (EMT) and drug resistance. YAP1 inhibitors are expected to be useful in cancer therapy. On the other hand, in certain cancers, YAP1 upregulates p73-dependent gene transcription and behaves as a tumor suppressor. Moreover, as YAP1 regulates self-renewal and differentiation of tissue stem cells and plays an important role in tissue homeostasis, YAP1 activators may contribute to the regenerative medicine. With this in our mind, we screened for YAP1 activators by using human retinal pigment epithelial ARPE-19 cells expressing the TEAD-responsive fluorescence reporter under the coexpression of YAP1. From an extensive chemical compound library ( = 18,606) 47 candidate YAP1 activators were identified. These compounds were characterized to determine whether this assay provides YAP1 activators. Importantly, one YAP1 activator was effective against the human multiple myeloma IM-9 cells and chronic myeloid leukemia K562 cells. YAP1 activation limits growth, induces apoptosis, and may be useful at suppressing hematological cancers. .
Highly malignant tumors overexpress the minichromosome maintenance 2 (MCM2) protein in the nucleus, which is associated with advanced tumor grade, advanced stage, and poor prognosis. In this study, we showed that MCM2 is highly expressed in clinical samples of ovarian clear cell carcinoma. Although MCM2 expression was mainly localized to the nuclei as in other cancers, a few cases exhibited cytoplasmic localization of MCM2. Surprisingly, tumor samples with cytoplasmic MCM2 demonstrated excellent prognosis, showing 100% survival during the observation period of more than 200 months. However, cases with nuclear expression of MCM2 exhibited approximately 78% 5-year-survival rate. In a previous study, we showed that Friend leukemia virus (FLV) envelope protein gp70 bound to MCM2, impaired its nuclear translocation, and enhanced DNA damage-induced apoptosis in FLV-infected hematopoietic cells with high levels of MCM2. As expected, clear cell carcinoma cells with cytoplasmic expression of MCM2 exhibited significantly higher apoptotic cell ratio than that of cells with nuclear MCM2 expression. In vitro experiments using ovarian cancer cells with cytoplasmic expression of MCM2 demonstrated that transfection of MCM2-ΔN enhanced DNA damage-induced apoptosis. Therefore, cytoplasmic localization of MCM2 significantly correlated with increased apoptosis in clear cell carcinoma cells, resulting in improved prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.