Many studies have used Global Navigation Satellite System (GNSS) traces to successfully extract segments of road networks because such data can be rapidly updated at a low cost. However, most studies have not focused on extracting intersections, which are indispensable parts of road networks in terms of connectivity. However, extracted intersections often present unsatisfactory precision and misleading connectivity. This study proposes a novel method for extracting road intersections from Global Position System (GPS) trace points and for capturing intersections with better accuracy. The key to improving the geometric accuracy of intersections is to identify the dominant orientations of road segments around intersections, merge similar orientations and maintain independent conflicting orientations. Extracting intersections by aligning the dominant orientations can largely reduce location offsets and road distortions. Experiments are performed to demonstrate the increased accuracy and connectivity of extracted road intersections by the proposed method.
Many studies have utilized global navigation satellite system (such as global positioning system (GPS)) trajectories in order to successfully infer road networks because such data can reveal the geometry and development of a road network, can be obtained in a timely manner, and updated on a low budget. Unfortunately, existing studies for inferring road networks from vehicle traces suffer from low accuracy, especially in dense urban regions and locations with complex structures, such as roundabouts, overpasses, and complex intersections. This study presents a novel two-stage approach for inferring road networks from trajectory points and capturing road geometry with better accuracy. First, a lane structure-aware filter is proposed to cluster vehicle trajectories influenced by high noise and outliers in order to reveal the continuous structure points of lane curves from massive trajectory points. Second, a road tracing operator is utilized to segment the road network geometry by inserting new vertices and segments to a vigorous vertex in the heading of the structure points that are extracted in the first step. Experimental results demonstrate the increased accuracy of the extracted roads and show that the proposed method exhibits strong robustness to noise and various sampling rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.