Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.
Exon skipping therapy has recently received attention for its ability to convert the phenotype of lethal Duchenne muscular dystrophy (DMD) to a more benign form, Becker muscular dystrophy (BMD), by correcting the open reading frame. This therapy has mainly focused on a hot-spot (exons 45-55) mutation in the DMD gene. Exon skipping of an entire stretch of exons 45-55 is an approach applicable to 46.9% of DMD patients. However, the resulting phenotype is not yet fully understood. Here we examined the clinical profiles of 24 patients with BMD resulting from deletions starting at exon 45. The Δ45-55 group ranged in age from 2 to 87 years; no mortality was observed, and one patient was ambulatory at 79 years of age. The age at which patients became wheelchair-bound in the Δ45-48 group (18-88 years old) was approximately 50 years. Cardiomyopathy was well controlled by pharmaceuticals in both deletion groups. In contrast, the Δ45-47 and Δ45-49 groups exhibited more severe phenotypes than those with other mutations: the age at which patients in the Δ45-49 group became wheelchair-bound was around 30-40 years. Our study shows that clinical severity differs between each hot-spot deletion.
We report a 67-year-old male patient who suffered from nephrotic syndrome and progressive renal dysfunction with monoclonal gammopathy (IgMkappa). Renal biopsy demonstrated amyloid deposition in glomeruli. Immunohistochemical studies of the renal amyloid using a number of antibodies, including anti-lambda and anti-kappa light chains, AA, beta(2)-microglobulin, and transthyretin, showed negative findings. Biochemical analysis of the deposited amyloid fibrils in gastroduodenal mucosa revealed that the amyloid fibrils were composed of an immunoglobulin heavy chain variable region (VH) fragment belonging to the VH1 subgroup, and a diagnosis of AH amyloidosis was made. In our institute, three patients with AH amyloidosis including the present one have been identified during the past 2 years, so AH amyloidosis seems to be by no means a rare disorder.
Few cases of dystrophinopathy show an asymptomatic phenotype with mutations in the 5' (exons 3-7) hot spot in the Duchenne muscular dystrophy (DMD) gene. Our patient showed increased serum creatine kinase levels at 12 years of age. A muscle biopsy at 15 years of age led to a diagnosis of Becker muscular dystrophy. The patient showed a slight decrease in cardiac function at the age of 21 years and was administered a β-blocker, but there was no muscle involvement even at the age of 27 years. A deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene was detected, and dystrophin protein expression was ∼15% that of control level. We propose that in-frame deletion of exons 3-9 may produce a functional protein, and that multiexon skipping therapy targeting these exons may be feasible for severe dystrophic patients with a mutation in the 5' hot spot of the DMD gene.
Guanosine triphosphate cyclohydrolase I (GCH1) mutations are associated with increased risk for dopa-responsive dystonia (DRD) and Parkinson's disease (PD). Herein, we investigated the frequency of GCH1 mutations and clinical symptoms in patients with clinically diagnosed PD and DRD. We used the Sanger method to screen entire exons in 268 patients with PD and 26 patients with DRD, with the examinations of brain magnetic resonance imaging scans, striatal dopamine transporter scans, and [I] metaiodobenzylguanidine (MIBG) myocardiac scintigraphy scans. We identified 15 patients with heterozygous GCH1 mutations from seven probands and five sporadic cases. The prevalence of GCH1 mutations in probands was different between PD [1.9% (5/268)] and DRD [26.9% (7/26)] (p value < 0.0001). The onset age tends to be different between PD and DRD patients: 35.4 ± 25.3 and 16.5 ± 13.6, respectively (average ± SD; p = 0.08). Most of the patients were women (14/15). Dystonia was common symptom, and dysautonomia and cognitive decline were uncommon in our PD and DRD. All patients presented mild parkinsonism or dystonia with excellent response to levodopa. Seven of seven DRD and three of five PD presented normal heart-to-mediastinum ratio on MIBG myocardial scintigraphy. Five of six DRD and three of four PD demonstrated normal densities of dopamine transporter. Our findings elucidated the clinical characteristics of PD and DRD patients due to GCH1 mutations. PD patients with GCH1 mutations also had different symptoms from those seen in typical PD. The patients with GCH1 mutations had heterogeneous clinical symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.