Osteomyelitis is difficult to treat because infective bone is poorly accessible for intravenously administering antibiotics and biofilm formation increases bacterial resistance. In this study, microspheres prepared using poly(lactide-co-glycolide) (PLGA) and embedded with moxifloxacin (MOX-PLGA microspheres) and rifampicin/moxifloxacin (RIF/MOX-PLGA microspheres) using the water-in-oil-inwater double emulsion solvent evaporation technique were used for local delivery. Shape of MOX-PLGA microspheres and RIF/MOX-PLGA microspheres were spherical, mean particle size of them were 20.52 lm and 16.62 lm, respectively. Encapsulation efficiency of the MOX-PLGA microspheres was 17.35% ± 2.42%. However, the encapsulation efficiency for MOX and RIF in RIF/MOX-PLGA microspheres was 33.25% ± 7.51% and 49.0% ± 11.25%, respectively. Moxifloxacin and rifampicin were released slowly from microspheres. Both microspheres can efficiently release antibiotics in vitro. Antibacterial and bacterial biofilm-inhibition properties of the released solution were investigated from RIF/MOX-PLGA, MOX-PLGA, and blank PLGA microspheres at varying time points in vitro. RIF/ MOX-PLGA microspheres demonstrated the strongest antibacterial activity and bacterial biofilm-inhibition property than the other two microspheres (p < .05). This study suggests that the novel RIF/ MOX-PLGA microspheres can be used as a promising carrier for osteomyelitis treatment.
Osteoarthritis (OA) is a serious disease of the articular cartilage characterized by excessive inflammation. Lately, mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) have been proposed as a novel strategy for the treatment of OA. We aimed to investigate the effects of EV-encapsulated miR-3960 derived from MSCs on chondrocyte injury in OA. The cartilage tissues from OA patients were collected to experimentally determine expression patterns of miR-3960, PHLDA2, SDC1, and β-catenin. Next, luciferase assay was implemented to testify the binding affinity among miR-3960 and PHLDA2. EVs were isolated from MSCs and cocultured with IL-1β-induced OA chondrocytes. Afterwards, cellular biological behaviors and levels of extracellular matrix- (ECM-) related protein anabolic markers (collagen II and aggrecan), catabolic markers (MMP13 and ADAMTS5), and inflammatory factors (IL-6 and TNF-α) in chondrocytes were assayed upon miR-3960 and/or PHLDA2 gain- or loss-of-function. Finally, the effects of miR-3960 contained in MSC-derived EVs in OA mouse models were also explored. MSCs-EVs could reduce IL-1β-induced inflammatory response and extracellular matrix (ECM) degradation in chondrocytes. miR-3960 expression was downregulated in cartilage tissues of OA patients but enriched in MSC-derived EVs. miR-3960 could target and inhibit PHLDA2, which was positively correlated with SDC1 and Wnt/β-catenin pathway activation. miR-3960 shuttled by MSC-derived EVs protected against apoptosis and ECM degradation in chondrocytes. In vivo experiment also confirmed that miR-3960 alleviated chondrocyte injury in OA. Collectively, MSC-derived EV-loaded miR-3960 downregulated PHLDA2 to inhibit chondrocyte injury via SDC1/Wnt/β-catenin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.