A new and highly efficient method for generating mutant pigs by electroporating the CRISPR/Cas9 system into zygotes.
Intracytoplasmic sperm injection (ICSI) of a nonmotile cell into the ooplasm for assisted fertilization is a highly specialized procedure for producing the next generation. The production of piglets by ICSI has succeeded when in vivo-matured oocytes have been used as recipients. Our objective was to generate viable piglets by using porcine oocytes matured in vitro and fertilized by ICSI after evaluating the efficacy of using donor spermatozoa in which the acrosome had been artificially removed by treatment with calcium ionophore A23187 (Ca-I). The rate of acrosomal loss in spermatozoa was increased significantly as the duration of treatment with 10 micro M Ca-I was prolonged for 30-120 min (Ca-I treated; 55.6-78.6%), whereas the rate was not different as the duration of incubation without Ca-I was prolonged for 30-120 min (control; 45.3-58.4%). On the sixth day of in vitro culture after injection of the sperm head and subsequent stimulation with an electrical pulse, the rates of blastocyst formation were not significantly different between the two groups: the rates for oocytes injected with Ca-I-treated sperm heads (incubated for 120 min) and for those injected with control sperm heads were 8.6% and 4.0%, respectively. The mean cell numbers of the blastocysts were not significantly different between the two groups (25.6 and 22.7, respectively). Within 2 h after the stimulation, the injected oocytes were transferred to estrous-synchronized recipients. The three recipients that received oocytes injected with Ca-I-treated sperm heads (77-150 oocytes per recipient) were not pregnant, whereas two of the four recipients given oocytes injected with control sperm heads (55-100 oocytes per recipient) were pregnant. One of these farrowed three (a male and two female) healthy piglets. The results demonstrate clearly that in vitro-matured oocytes injected with sperm heads are developmentally competent and can produce viable piglets. They also suggest that removal of the acrosome from the spermatozoon before injection does not affect the development of the blastocyst in vitro. This might not also improve the production of piglets in vivo.
We investigated effects of invasive adenylate cyclase (iAC), 3-isobutyl-1-methylxanthine (IBMX) and dibutyryl cyclic AMP (dbcAMP) on porcine oocyte in vitro maturation (IVM), in vitro fertilisation (IVF) and subsequent embryonic development. Porcine oocytes were collected in Hepes-buffered NCSU-37 supplemented with or without 0.1 μg/ml iAC and 0.5 mM IBMX. IVM was performed in a modified NCSU-37 supplemented with or without 1 mM dbcAMP for 22 h and then without dbcAMP for an additional 24 h. After IVF, oocytes were cultured in vitro for 6 days. After 12 h of IVM, no difference in nuclear status was observed irrespective of supplementation with these chemicals during collection and IVM. At 22 h, most (95%) of the oocytes cultured with dbcAMP remained at the germinal vesicle (GV) stage, whereas 44.3% of the oocytes cultured without dbcAMP underwent GV breakdown. At 36 h, oocytes cultured with dbcAMP had progressed to prometaphase I or metaphase I (MI) (32.6% and 49.3%, respectively), whereas non-treated oocytes had progressed further to anaphase I, telophase I or metaphase II (MII) (13.6%, 14.3% and 38.0%, respectively). At 46 h, the rate of matured oocytes at MII was higher in oocytes cultured with dbcAMP (81%) than without dbcAMP (57%), while the proportion of oocytes arrested at MI was lower when cultured with dbcAMP (15%) than without dbcAMP (31%). The rate of monospermic fertilisation was higher when oocytes were cultured with dbcAMP (21%) than without dbcAMP (9%), with no difference in total penetration rates (58% and 52%, respectively). The blastocyst rate was higher in oocytes cultured with dbcAMP (32%) than without dbcAMP (19%). These results suggest that a change in intracellular level of cAMP during oocyte collection does not affect maturational and developmental competence of porcine oocytes and that synchronisation of meiotic maturation using dbcAMP enhances the meiotic potential of oocytes by promoting the MI to MII transition and results in high developmental competence by monospermic fertilisation.
A shift from a meiotic cell cycle to a mitotic cell cycle occurs following fertilization. The molecular basis for this transition, however, is poorly understood. Although cyclin A1 is proposed to regulate M phase in the meiotic cell cycle, and cyclin A2 is proposed to regulate S and M phases in the mitotic cell cycle, little is known about changes in the expression levels of cyclin A1 and A2 during meiotic and mitotic cell cycles in mammalian oocytes. We report that the mRNA levels of both cyclins A1 and A2 decrease during oocyte maturation. The amount of cyclin A1 mRNA then increases between the one-cell and blastocyst stages, whereas that of cyclin A2 remains relatively constant. The amount of cyclin A1 protein declines during maturation and is not readily detected from the two-cell to the blastocyst stage. In contrast, cyclin A2 is not readily detected in the oocyte and metaphase II-arrested egg but is detected following fertilization and throughout the subsequent stages of preimplantation development. The appearance of cyclin A2 protein following fertilization positively correlates with an increase in the size of the mRNA. This increase, as well as the increase in the amount of cyclin A2 protein, is prevented by 3'-deoxyadenosine (3'-dA), an inhibitor of polyadenylation. Consistent with a role for cyclin A2 in regulating the G1/S transition, 3'-dA also inhibits DNA replication in treated one-cell embryos. These results suggest that regulation of expression of cyclins A1 and A2 is under posttranscriptional regulation and that the observed changes in their expression may be involved in the transformation of a meiotic cell cycle to a mitotic cell cycle following fertilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.