Various liquid biopsy methods have been developed for the non-invasive and early detection of diseases. In particular, the detection of circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) in blood has been receiving a great deal of attention. We have been developing systems and materials to facilitate such liquid biopsies. In this study, we further developed glass filters (with various patterns of holes, pitches, and non-adhesive coating) that can capture CTCs, but not white blood cells. We optimized the glass filters to capture CTCs, and demonstrated that they could be used to detect CTCs from lung cancer patients. We also used the optimized glass filters for detecting CAFs. Additionally, we further developed a system for visualizing the captured cells on the glass filters. Finally, we demonstrated that we could directly culture the captured cells on the glass filters. Based on these results, our high-performance glass filters appear to be useful for capturing and culturing CTCs and CAFs for further examinations.
Various liquid biopsy methods have been developed for the non-invasive and early detection of diseases. In particular, the detection of circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) in blood has been receiving a great deal of attention. We have been developing systems and materials to facilitate such liquid biopsies. In this study, we further developed glass filters (with various patterns of holes, pitches, and non-adhesive coating) that can capture CTCs, but not white blood cells. We optimized the glass filters to capture CTCs, and demonstrated that they could be used to detect CTCs from lung cancer patients. We also used the optimized glass filters for detecting CAFs. Additionally, we further developed a system for visualizing the captured cells on the glass filters. Finally, we demonstrated that we could directly culture the captured cells on the glass filters. Based on these results, our high-performance glass filters appear to be useful for capturing and culturing CTCs and CAFs for further examinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.