The growing demand of high-bandwidth and low-latency information transfer in information and communication technologies such as data centres and in-vehicle networks has increased the importance of optical communication networks in recent years. However, complicated arbitration schemes can impose significant overheads in data transfer, which may inhibit the full exploitation of the potential of optical interconnects. Herein, we propose an arbitration protocol based on precision time synchronization via wireless two-way interferometry (Wi-Wi), and numerically validate its efficiency including the ability to impose a strict upper bound on the latency of data transfer.Compared with the conventional carrier sense multiple access/collision detection (CSMA/CD)-based approach, a significant improvement in the data transfer was observed especially in the cases with high traffic flow rate.Furthermore, we conducted a proof-of-principle experiment for Wi-Wi-based data transfer between two electrically connected nodes and confirmed that the skew was less than 300 ns and remained stable over time.Conversely, non-WiWi-based data transfer exhibited huge and unstable skew. These results indicate that precision time synchronization is a promising resource to significantly reduce the communication overheads and ensure low latency for future networks and real-time applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.