Cardio-facio-cutaneous (CFC) syndrome is one of the 'RASopathies', a group of phenotypically overlapping syndromes caused by germline mutations that encode components of the RAS-MAPK pathway. Germline mutations in BRAF cause CFC syndrome, which is characterized by heart defects, distinctive facial features and ectodermal abnormalities. To define the pathogenesis and to develop a potential therapeutic approach in CFC syndrome, we here generated new knockin mice (here Braf(Q241R/+)) expressing the Braf Q241R mutation, which corresponds to the most frequent mutation in CFC syndrome, Q257R. Braf(Q241R/+) mice manifested embryonic/neonatal lethality, showing liver necrosis, edema and craniofacial abnormalities. Histological analysis revealed multiple heart defects, including cardiomegaly, enlarged cardiac valves, ventricular noncompaction and ventricular septal defects. Braf(Q241R/+) embryos also showed massively distended jugular lymphatic sacs and subcutaneous lymphatic vessels, demonstrating lymphatic defects in RASopathy knockin mice for the first time. Prenatal treatment with a MEK inhibitor, PD0325901, rescued the embryonic lethality with amelioration of craniofacial abnormalities and edema in Braf(Q241R/+) embryos. Unexpectedly, one surviving pup was obtained after treatment with a histone 3 demethylase inhibitor, GSK-J4, or NCDM-32b. Combination treatment with PD0325901 and GSK-J4 further increased the rescue from embryonic lethality, ameliorating enlarged cardiac valves. These results suggest that our new Braf knockin mice recapitulate major features of RASopathies and that epigenetic modulation as well as the inhibition of the ERK pathway will be a potential therapeutic strategy for the treatment of CFC syndrome.
Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. > 80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice) as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo.
Summary
Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acroosteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C-terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.
Genetic mosaicism for somatic mutations of oncogenes is common in genodermatoses, which can be complicated with extra-cutaneous abnormalities. Here we describe an infant with a congenital anaplastic astrocytoma, a linear syringocystadenoma papilliferum, and ocular abnormalities. The BRAF c.1799T>A p.V600E mutation was detected in both the brain and skin tumor cells but not in the blood or normal skin cells, suggesting somatic mosaicsism for the mutation. Clinically, the brain tumor gradually became life threatening without any response to conventional chemotherapies including carboplatin, etoposide, and temozolomide. Vemurafenib, a BRAF p.V600E inhibitor, was administered daily after the detection of the BRAF mutation. This single-agent therapy was dramatically effective against the anaplastic astrocytoma; the tumor regressed, the cerebrospinal fluid cell count and protein levels decreased to normal levels, and hydrocephalus resolved. Moreover, other lesions including a corneal cyst also responded to vemurafenib. The brain tumor continued shrinking after 6 months of treatment. We present a genodermatosis syndrome associated with BRAF c.1799T>A p.V600E mosaicism. This syndrome may represent a new entity in the mosaic RASopathies, partly overlapping with Schimmelpenning-Feuerstein-Mims syndrome, which is driven by mosaicism of HRAS and/or KRAS activating mutations. Screening for BRAF c.1799T>A p.V600E is especially useful for those with malignant tumors, because it is one of the most-druggable targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.