Reverse transcription and real-time PCR (RT-qPCR) has been widely used for rapid quantification of relative gene expression. To offset technical confounding variations, stably-expressed internal reference genes are measured simultaneously along with target genes for data normalization. Statistic methods have been developed for reference validation; however normalization of RT-qPCR data still remains arbitrary due to pre-experimental determination of particular reference genes. To establish a method for determination of the most stable normalizing factor (NF) across samples for robust data normalization, we measured the expression of 20 candidate reference genes and 7 target genes in 15 Drosophila head cDNA samples using RT-qPCR. The 20 reference genes exhibit sample-specific variation in their expression stability. Unexpectedly the NF variation across samples does not exhibit a continuous decrease with pairwise inclusion of more reference genes, suggesting that either too few or too many reference genes may detriment the robustness of data normalization. The optimal number of reference genes predicted by the minimal and most stable NF variation differs greatly from 1 to more than 10 based on particular sample sets. We also found that GstD1, InR and Hsp70 expression exhibits an age-dependent increase in fly heads; however their relative expression levels are significantly affected by NF using different numbers of reference genes. Due to highly dependent on actual data, RT-qPCR reference genes thus have to be validated and selected at post-experimental data analysis stage rather than by pre-experimental determination.
The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Aβ1–42) is believed to play a causative role in the development of AD. Here we expressed human Aβ1–42 and amyloid beta 40 (Aβ1–40) in Drosophila neurons. Aβ1–42 but not Aβ1–40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Aβ1–42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Aβ1–42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Aβ1–42 and Aβ1–40, and reveal an Aβ1–42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury.
Aging is known to be the most prominent risk factor for Alzheimer's disease (AD); however, the underlying mechanism linking brain aging with AD pathogenesis remains unknown. The expression of human amyloid beta 42 peptide (Aβ₁₋₄₂), but not Aβ₁₋₄₀ in Drosophila brain induces an early onset and progressive autophagy-lysosomal neuropathology. Here we show that the natural process of brain aging also accompanies a chronic and late-onset deterioration of neuronal autophagy-lysosomal system. This process is characterized by accumulation of dysfunctional autophagy-lysosomal vesicles, a compromise of these vesicles leading to damage of intracellular membranes and organelles, necrotic-like intraneuronal destruction and neurodegeneration. In addition, conditional activation of neuronal autophagy in young animals is protective while late activation is deleterious for survival. Intriguingly, conditional Aβ₁₋₄₂ expression limited to young animals exacerbates the aging process to a greater extent than Aβ₁₋₄₂ expression in old animals. These data suggest that the neuronal autophagy-lysosomal system may shift from a functional and protective state to a pathological and deleterious state either during brain aging or via Aβ₁₋₄₂ neurotoxicity. A chronic deterioration of the neuronal autophagy-lysosomal system is likely to be a key event in transitioning from normal brain aging to pathological aging leading to Alzheimer's neurodegeneration.
The macroautophagy (autophagy) pathway is thought to be involved in a variety of neurodegenerative diseases, including Alzheimer disease (AD). It is not clear however, if autophagy plays a causative role, a protective role or is a consequence of the disease process itself. Using a Drosophila model of neuron-limited expression of AD-associated amyloid beta (Abeta) peptides, we have demonstrated an autophagy-mediated neurodegenerative cascade that is initiated by Abeta(1-42) and enhanced by aging. Our results suggest a central role for the autophagy pathway in AD type neurodegeneration and a new framework to understand seemingly unrelated AD phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.