Donor−linker−acceptor (D-L-A)-based photoinduced electron transfer (PET) has been frequently used for the construction of versatile fluorescent chemo/biosensors. However, sophisticated and tedious processes are generally required for the synthesis of these probes, which leads to poor design flexibility. In this work, by exploiting a Schiff base as a linker unit, a covalently bound D-L-A system was established and subsequently utilized for the development of a PET sensor. Cysteamine (Cys) and N-acetyl-L-cysteine (NAC) costabilized gold nanoclusters (Cys/ NAC-AuNCs) were synthesized and adopted as an electron acceptor, and pyridoxal phosphate (PLP) was selected as an electron donor. PLP can form a Schiff base (an aldimine) with the primary amino group of Cys/NAC-AuNC through its aldehyde group and thereby suppresses the fluorescence of Cys/NAC-AuNC. The Rehm−Weller formula results and a HOMO−LUMO orbital study revealed that a reductive PET mechanism is responsible for the observed fluorescence quenching. Since the pyridoxal (PL) produced by the acid phosphatase (ACP)-catalyzed cleavage of PLP has a weak interaction with Cys/NAC-AuNC, a novel turn-on fluorescent method for selective detection of ACP was successfully realized. To the best of our knowledge, this is the first example of the development of a covalently bound D-L-A system for fluorescent PET sensing of enzyme activity based on AuNC nanoprobes using a Schiff base.
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central-to-axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.