Summary CD4+ CD25 bright regulatory T (Treg) cells have been identified as a principle regulator of tolerance during pregnancy. In the setting of pre-eclampsia, however, little is known about the dynamics of these cells. In the current study, we determined CD4 + CD25 bright Treg cells in the peripheral blood using flow cytometry and forkhead box P3 (FoxP3 + ) cells at the placental bed using immunohistochemical staining. Peripheral blood mononuclear cells (PBMC) of 38 pre-eclamptic cases (17 cases Japanese, 21 cases Polish), 40 normal late pregnancy subjects (20 subjects Japanese, 20 subjects Polish), and 21 non-pregnant healthy controls (10 subjects Japanese, 11 subjects Polish) were included. We found the percentage of CD25 bright cells within the CD4+ T cell population in PBMC was reduced significantly in both Japanese and Polish pre-eclamptic cases than in normal pregnancy subjects (P < 0·001) and non-pregnant healthy controls (P < 0·001). Also, the percentage of FoxP3+ cells within CD3 + T cells in the placental bed biopsy samples of pre-eclamptic cases were decreased compared to those in normal pregnancy subjects. These findings suggest that a decreased number of Treg cells was present in pre-eclampsia, and these changes might break the maternal tolerance to the fetus.
To establish an ultimate energy conversion system consisting of a water-splitting photocatalyst and a fuel cell, it is necessary to further increase the efficiencies of the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR). Recently, it was demonstrated that thiolate (SR)-protected gold clusters, Au n (SR) m , and their related alloy clusters can serve as model catalysts for these three reactions. However, as the previous data have been obtained under different experimental conditions, it is difficult to use them to gain a deep understanding of the means to attain higher activity in these reactions. Herein, we measured the HER, OER, and ORR activities of Au n (SR) m and alloy clusters containing different numbers of constituent atoms, ligand functional groups, and heteroatom species under identical experimental conditions. We obtained a comprehensive set of results that illustrates the effect of each parameter on the activities of the three reactions. Comparison of the series of results revealed that decreasing the number of constituent atoms in the cluster, decreasing the thickness of the ligand layer, and substituting Au with Pd improve the activities in all reactions. Taking the stability of the cluster into consideration, [Au 24 Pd(PET) 18 ] 0 (PET = 2-phenylethanethiolate) can be considered as a metal cluster with high potential as an HER, OER, and ORR catalyst. These findings are expected to provide clear design guidelines for the development of highly active HER, OER, and ORR catalysts using Au n (SR) m and related alloy clusters, which would allow realization of an ultimate energy conversion system. † Electronic supplementary information (ESI) available: Geometrical structure of each cluster, MALDI mass spectra, UV-vis spectra, schematic of the proposed energy conversion system, additional linear sweep voltammograms of the products. See
The dopaminergic terminal projecting from the VTA received inhibitory GABA-mediated NMDA/glutamatergic regulation, but not stimulatory AMPA/glutamatergic regulation. However, both dopaminergic and noradrenergic terminals from the LC received stimulatory AMPA/glutamatergic regulation from the MTN, but not inhibitory GABA-mediated NMDA/glutamatergic regulation. These findings correlating neuronal activities in nuclei with neurotransmitter release suggested that the effects of QTP on neurotransmission in the mPFC depend on activated neuronal projections located outside the mPFC. Furthermore, positive interaction between LC and MTN afferents are potentially important in the pharmacological mechanisms of neurotransmitter regulation by QTP and hint at mechanisms underlying the atypical profile of this drug for treatment of schizophrenia and as a mood stabilizer and proconvulsive agent.
Metal nanoclusters (NCs), which are composed of about 250 or fewer metal atoms, possess great potential as novel functional materials. Fundamental research on metal NCs gradually started in the 1960s, and since 2000, thiolate (SR)‐protected metal NCs have been the main metal NCs actively studied. The precise and systematic isolation of SR‐protected metal NCs has been achieved in 2005. Since then, research on SR‐protected metal NCs for both basic science and practical application has rapidly expanded. This review describes this recent progress in the field of SR‐protected metal NCs in three areas: synthesis, understanding, and application. Specifically, the recent study of alloy NCs and connected structures composed of NCs is highlighted in the “synthesis” section, recent knowledge on the reactivity of NCs in solution is highlighted in the “understanding” section, and the applications of NCs in the energy and environmental field are highlighted in the “application” section. This review provides insight on the current state of research on SR‐protected metal NCs and discusses the challenges to be overcome for further development in this field as well as the possibilities that these materials can contribute to solving the problems facing modern society.
Background and purpose:The atypical antipsychotic drug, zotepine, is effective in treatment of schizophrenia and acute mania, but the incidence of seizures during treatment is higher than with other antipsychotics. In addition, the mechanisms underlying the clinical actions of zotepine remain uncharacterized. Experimental approach: The effects of intraperitoneal administration of zotepine and haloperidol on the extracellular levels of noradrenaline, dopamine, 5-HT, GABA, and glutamate in the medial prefrontal cortex (mPFC) were compared. Neuronal activities induced by each drug in the ventral tegmental area (VTA), locus coeruleus (LC), dorsal raphe nucleus (DRN) and mediodorsal thalamic nucleus (MTN) were also analysed. Key results: Haloperidol did not affect extracellular neurotransmitter levels in the mPFC. In contrast, zotepine activated neuronal activities in all nuclei and increased the extracellular levels of noradrenaline, dopamine, GABA, and glutamate in the mPFC, but not 5-HT levels. The zotepine-stimulated neuronal activity in the VTA, LC, DRN and MTN enhanced the release of dopamine, noradrenaline, 5-HT, glutamate and GABA in the mPFC, although the enhanced GABAergic transmission possibly inhibited noradrenaline, dopamine and 5-HT release. The other afferent to mPFC, which releases dopamine and noradrenaline, was partially insensitive to GABAergic inhibition, but possibly received stimulatory AMPA/glutamatergic regulation from the MTN. Conclusions and implications:Our results indicated that the positive interaction between prefrontal catecholaminergic transmission and AMPA/glutamatergic transmission from MTN might explain the regulatory effects of zotepine on neurotransmitter release. A mechanism is suggested to account for the pharmacological profile of this atypical antipsychotic and for its pro-convulsive action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.