In order to solve the problem of vehicle delay caused by stops at signalized intersections, a micro-control method of a left-turning connected and automated vehicle (CAV) based on an improved deep deterministic policy gradient (DDPG) is designed in this paper. In this paper, the micro-control of the whole process of a left-turn vehicle approaching, entering, and leaving a signalized intersection is considered. In addition, in order to solve the problems of low sampling efficiency and overestimation of the critic network of the DDPG algorithm, a positive and negative reward experience replay buffer sampling mechanism and multi-critic network structure are adopted in the DDPG algorithm in this paper. Finally, the effectiveness of the signal control method, six DDPG-based methods (DDPG, PNRERB-1C-DDPG, PNRERB-3C-DDPG, PNRERB-5C-DDPG, PNRERB-5CNG-DDPG, and PNRERB-7C-DDPG), and four DQN-based methods (DQN, Dueling DQN, Double DQN, and Prioritized Replay DQN) are verified under 0.2, 0.5, and 0.7 saturation degrees of left-turning vehicles at a signalized intersection within a VISSIM simulation environment. The results show that the proposed deep reinforcement learning method can get a number of stops benefits ranging from 5% to 94%, stop time benefits ranging from 1% to 99%, and delay benefits ranging from −17% to 93%, respectively compared with the traditional signal control method.
Urban vehicle trajectory prediction positively alleviates traffic congestion, avoids traffic accidents, and optimizes the urban transportation system. Since taxi trajectories are influenced by the driving intention, it is significant to consider the Points of Interest (POI) as the spatial features for trajectory prediction. A Knowledge Graph Convolutional Network Long Short-Term Memory (KGCN-LSTM) model is proposed here to improve the accuracy and robustness of trajectory prediction. POI information is considered as the prior-knowledge of the trajectory by the Graph Convolutional Network (GCN). Under multiple comparison experiments, Shopping POI gains the highest positive effect weight of 15% in holidays, and Hospital POI gains the highest weight of 16% in working days. In holidays, higher accuracy and robustness are achieved compared with benchmarks when performing the KGCN-LSTM model with POI of shopping, food, life service, scenic spots, and entertainment classes, while the performance is not improved with the rest of the POI classes. In working days, higher accuracy and stronger robustness are achieved compared with benchmarks when performing the KGCN-LSTM model with POI of hospital, life service, and exercise. While the performance is not improved with the rest of the POI classes.
Intelligent cities are the inevitable trend of urban information construction, but in this inevitable trend, how one ensures the construction achievement of smart city, takes full action to maximum efficiency of information, and avoids losses are very worthy of consideration. Based on the background of intelligent cities, this chapter explains the related concept of management and service and risk and operation. Clarifying the related problems, and giving relevant suggestions as well as applications based on the current social development, further direction is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.