Shape memory polymer nanocomposites based on thermoplastic polyurethane (TPU)/polylactic acid (PLA) blends filled with pristine multi‐walled carbon nanotubes (MWCNTs) and modified MWCNTs─COOH were fabricated by direct melt blending technique and investigated for its morphology, mechanical, thermal, electrical, and shape memory properties. Morphological characterizations by using transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM) revealed better dispersion of MWCNTs─COOH in the polymer blend, which is attributed to the improved interfacial interactions between the polymer blends and MWCNTs‐COOH. Loading of the MWCNTs‐COOH in the TPU/PLA blends resulted in the significant improvements in the mechanical properties such as tensile strength and elastic modulus and these effects are more pronounced on increasing the MWCNTs─COOH loading amount, when compared to the pristine MWCNTs filled system. Thermal analysis showed that the glass transition temperature of the blends increases slightly with increasing loading of both pristine and modified MWCNTs in the system. The resistance of nanocomposites decreased from 2 × 1012 Ω to 3.2 × 1010 Ω after adding 3% MWCNTs─COOH. The shape memory performance tests showed that the enhancement of shape recovery by 252% could be achieved at 3% MWCNTs loading, when compared to that of TPU/PLA blends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.